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Abstract

Deep Metric Learning (DML) models often require
strong local and global representations, however, effec-
tive integration of local and global features in DML model
training is a challenge. DML models are often trained with
specific loss functions, including pairwise-based and proxy-
based losses. The pairwise-based loss functions leverage
rich semantic relations among data points, however, they of-
ten suffer from slow convergence during DML model train-
ing. On the other hand, the proxy-based loss functions often
lead to significant speedups in convergence during train-
ing, while the rich relations among data points are often
not fully explored by the proxy-based losses. In this paper,
we propose a novel DML approach to address these chal-
lenges. The proposed DML approach makes use of a hy-
brid loss by integrating the pairwise-based and the proxy-
based loss functions to leverage rich data-to-data relations
as well as fast convergence. Furthermore, the proposed
DML approach utilizes both global and local features to
obtain rich representations in DML model training. Finally,
we also use the second-order attention for feature enhance-
ment to improve accurate and efficient retrieval. In our
experiments, we extensively evaluated the proposed DML
approach on four public benchmarks, and the experimen-
tal results demonstrate that the proposed method achieved
state-of-the-art performance on all benchmarks.

1. Introduction
Learning semantically meaningful representations has

been a vital step in numerous computer vision applica-
tions such as representation learning [60, 68], content-
based visual retrieval [26, 25, 36, 53], person or vehicle
re-identification [69, 56, 34], and face verification [30, 18].
Deep Convolutional Neural Networks (CNNs) have proven
repeatedly their effectiveness in the large spectrum of ap-
plications [11, 10, 14, 58, 6, 13, 12] including Deep Metric
Learning (DML). The neural networks in DML are trained
to map the data to a lower-dimensional embedding space in
which similar data (data in the same class) are pulled to-
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Figure 1. Accuracy in Recall@1 versus epochs on the Cars-
196 [29] dataset. Note that all methods were trained on a sin-
gle Quadro p5000 GPU with a batch size of 100. Our method
achieves the highest accuracy while converging at the same order
as the proxy-based baselines in terms of the number of epochs.

gether and the dissimilar data (data in different classes) are
pushed away [53, 61]. For such an embedding space, rich
representations and special loss functions are inevitable.

High image retrieval often requires global and local rep-
resentations [7]. The global features [47, 1], or “global de-
scriptors” compactly summarize the contents of an image.
Often global descriptors are taken from the deepest layers
in CNNs; therefore, they only involve the most abstract in-
formation, and the vital identifiers such as geometry and
spatial information are lost. On the other hand, local fea-
tures [4, 33], involve information about the geometry and
spatial information of the input image. Generally speaking,
global features lead to better recall, while local features are
essential in better precision [7]. A typical retrieval system
setup takes advantage of both global and local features in its
final embeddings to obtain the best of both worlds.

Recently, self-attention or Second-Order Attention
(SOA) in feature space has received a significant attrac-
tion [55, 59, 38, 54, 65]. The SOA can be considered as
a spatial enhancement technique that reflects the correlation
among spatial locations and enhances the highly correlated
parts of the feature map. Although recent deep-learning-
based global descriptors provide effective ways to aggre-
gate features into a compact global vector, they have not



Figure 2. Our proposed deep metric learning architecture with lo-
cal and global features. Our model jointly extracts deep local and
global features. Both of these features will be further enhanced
spatially by an SOA mechanism.

explored the correlations of low-level and high-level fea-
tures within feature maps simultaneously. The other vi-
tal factor in DML is the loss function. The loss func-
tions are essential to provide a powerful supervisory sig-
nal based on the problem objectives [25, 61]. The loss
functions in the DML problems are classified into pairwise-
based [61, 48, 57, 50, 41], and proxy-based [36, 25, 53]
models. The pairwise-based losses are built based on com-
paring the pairwise distances between data in the batch.
While the pairwise-based losses provide a strong supervi-
sory signal for training the model by considering data-to-
data relations [50, 61], they suffer from sample mining and
slow convergence [25].

The proxy-based losses address the above issues by in-
troducing a limited number of proxies [36, 25, 53]. A proxy
is a representative of a subset of training data (for instance, a
proxy per class) and learned along with network parameters.
Since the number of proxies is substantially smaller than
the data-points, the proxy-based models benefit from faster
convergence rates than the pairwise-based losses. Note the
proxy-based models are associated with data-to-proxy re-
lations and they miss the rich supervisory information of
data-to-data relations.

In this paper, we propose a multi-head network that
benefits from the fast convergence of the proxy-based loss
functions and rich data-to-data relation of the pairwise-
based models. Although we are using a hybrid of both
proxy-based and pairwise-based loss functions in our multi-
head network, our approach does not introduce any hyper-
parameter tuning for tuple sampling. Our framework also
involves an SOA mechanism to exploit the correlation be-
tween features at different spatial locations to further en-
hance the deep local and global features. Also, we com-
bine both global and local descriptors to produce the final
descriptor that holds the content information as well as ge-
ometry and spatial information to efficiently select the most
similar images. With the above advantages, our proposed
method achieves state-of-the-art performance in terms of
Recall@1 and quickly converges as exhibited in Figure 1.

The contribution of this paper unfolds as follows: (a) We
propose a multi-head network that takes advantage of both
pairwise-based and proxy-based methods; it leverages rich

data-to-data relations and enables fast and reliable conver-
gence. (b) We explore the SOA for further enhancement of
both local and global features based on higher-order infor-
mation. (c) We demonstrate the impact of using local and
global descriptors, proxy-based and pairwise-based, SOA,
and the embedding dimensions via a thorough ablation
study on their effects. (d) An embedding neural network
trained with our approach achieves state-of-the-art perfor-
mance on four publicly available benchmarks for metric
learning [29, 63, 42, 31].

2. Related Work
In this section, we categorize the DML approaches based

on their use of descriptors and loss functions into two broad
categories, then we review relevant papers in each category.

2.1. Loss Functions
Loss functions in DML can be divided into two groups,

pairwise-based and proxy-based.

Pairwise-based Losses. Contrastive loss [8, 19] and Triplet
loss [48, 57] are influential examples of loss functions for
pairwise-based DML. Contrastive loss takes a pair of em-
bedding vectors as input and aims to push them apart if they
are of different classes or pull them together if they are of
the same class. Triplet loss considers a data point as an
anchor. Each anchor is associated with a positive (an em-
bedding with an identical class label to the anchor) and a
negative data point (an embedding with different class la-
bels) and involves the distance of the anchor-positive pair
to be smaller than that of the anchor-negative pair in the
embedding space.

One potential issue with pairwise-based models is that
a large number of tuples have a limited contribution to the
learning algorithm and sometimes even diminish the quality
of the learned embedding space [64]. To address this issue,
most pairwise-based losses [50, 43, 62] employ hard sample
mining techniques [64, 20]. However, these techniques in-
volve tuning hyper-parameters and consequently increases
the risk of over-fitting. Pairwise-based losses are rich in
data-to-data relations. However, the number of tuples in-
creases polynomially with regard to the number of training
data, resulting in prohibitive complexity and significantly
slow convergence [25].

Proxy-based Losses. Proxy-based metric learning endeav-
ors to address the complexity and slow convergence issue
of the pairwise-based losses. The proxy-based methods re-
quire a small set of proxies to capture the global structure
of an embedding space and assign each data point to rele-
vant proxies instead of the other data points during training.
Since the number of proxies is significantly smaller than the
training data, the training complexity reduces substantially.
For instance, Proxy-NCA [36] loss assigns a single proxy
to each class and associates data points to each proxy and



Figure 3. Our proposed multi-head metric learning architecture with joint local and global features. The local and global features are jointly
extracted from the backbone and they are sent to the SOA block (the blue block) for further enhancement. Then, we apply pooling layers
on top of the refined and re-weighted features. The final embedding involves the concatenation of local and global representations that are
used for retrieval to efficiently select the most similar images based on both local and global identifiers simultaneously. Finally, a hybrid
loss involving a proxy-based and a pairwise based is applied to the final embedding.

encourages positive pairs to be close together and negative
pairs to be far apart. Proxy-NCA++ [53] is an extension
of the Proxy-NCA and aims to enhance the limitations of
the Proxy-NCA in terms of temperature factor and pooling
layer.

SoftTriple loss [46], inspired by the Proxy-NCA yet as-
signs multiple proxies to each class instead of one to im-
prove the likelihood of capturing the intra-class variance.
Proxy-Anchor loss [25] assigns a proxy to each class and
treats each proxy as an anchor and assigns positive and neg-
ative pairs to each anchor. Although introducing proxies in
proxy-based losses significantly improves the convergence
in model training, it has an inherent limitation of data-to-
proxy relation instead of data-to-data relation that results in
limited supervisory information. Our multi-head network
overcomes this limitation by proposing a hybrid approach
involves in both pairwise-based and proxy-based methods
to benefit data-to-data relations as well as high convergence
rates.

2.2. Descriptors
DML algorithms can be divided into three groups based

on their use of descriptors: local descriptors, global descrip-
tors, and joint local and global descriptors.

Local Descriptors. Hand-engineered features such as
SIFT [33] and SURF [4] have been widely used and adopted
for retrieval systems especially before the deep learning era.
The key advantage of local features over global ones for
image retrieval is their capacity to perform spatial match-
ing, often by utilizing RANSAC [15]. Due to the efficiency
of local features, recently, several deep learning-based local
features have been proposed [66, 39, 35, 44].

Global Descriptors. Global descriptors are often involved
the most abstract information about the input, leading to
high-performance image retrieval. Before the deep learning
era, most global descriptors were obtained using the com-
bination of local descriptors [23, 24]. However, recently

most high-performing global features are obtained based on
CNNs [3, 2, 17].

Joint Local and Global Descriptors. Global descriptors
are essential for high recalls yet local descriptors are neces-
sary for better precision; therefore, researchers develop hy-
brid methods to take advantage of both descriptors. For in-
stance, Taira et al. [52] used NetVLAD [2] to extract global
features for candidate pose retrieval, followed by dense lo-
cal feature matching using feature maps from the same net-
work for indoor localization. Simeoni et al. ’s DSM [49]
detected key points in activation maps from global fea-
ture models. Activation channels are interpreted as visual
words, to propose correspondences between a pair of im-
ages. Cao et al. [7] extracted global and local features from
the same network. They utilize the global descriptors to re-
trieve the most similar images and then re-rank the retrieved
images by local descriptors to increase the precision.

3. Proposed Algorithm
Our proposed algorithm involves two essential compo-

nents: Refined deep local and global representations along
with a multi-head loss function that enables the data-to-data
relation as well as fast convergence. Our model design is
illustrated in Figure 2.

3.1. Deep Global and Local Representations
We propose to leverage hierarchical representations from

a CNN to represent different types of descriptors. While
deep layers are associated with the most abstract represen-
tations and representing higher-level features, the interme-
diate layers are more informative in terms of local represen-
tations and lower-level features.

Given an image, from the backbone we obtain two fea-
ture maps: fl ∈ RHl×Wl×Cl and fg ∈ RHg×Wg×Cg , repre-
senting local (l) and global (g) feature maps where H,W,C
indicate the height, width, and number of channels respec-
tively. For off-the-shelf convolutional networks, Hg ≤ Hl,



Wg ≤ Wl, and Cg ≥ Cl; indicating that deeper layers
have larger number of channels and spatially smaller fea-
ture maps.

3.2. Second-Order Attention (SOA)
Let (iI , jI) in the input image (I) correspond to location

(i, j) in feature map f . To incorporate higher-order spatial
information into the feature map, we adopt the second-order
attention block [55, 38]. A computational flow of the SOA
concept is shown in Figure 3. For each feature map, we pro-
duce two projections of feature map f named query q, and
key k, each obtained through 1 × 1 2d-convolutions with
possible reduction of number of channels (d). Then, by flat-
tening both tensors, we obtain both q and k in Rd×hw. The
second-order attention map A is computed as follows:

a = softmax(ζqT k), (1)

where ζ is a scaling factor and a ∈ Rhw×hw, indicating
the correlation of each fi,j to the whole map f . A third
projection of f and value v is then obtained by 1 × 1 2d-
convolution, and after flattening, results in Rhw×d shape.
Then, the second-order attention map fsoa is obtained from
linear combination of the first-order features f and the
second-order attention map:

fsoa = f + ϕ(a× v), (2)

where ϕ is yet another 1 × 1 convolution to manage the
effect of the obtained attention map. Thus, a new feature
fsoa
i,j in the second-order map fsoa ∈ Rh×w×d, is a function

of features from all locations in f :

fsoa
i,j = h(aij ⊙ f), (3)

where h denotes the combination of all convolutional oper-
ations within the non-local block.

3.3. Pooling
To aggregate deep activations in both global and local

features, we adopt the combination of Global Max Pooling
(GMP) and Global Average Pooling (GAP) as follows:

f =
1

W ×H

∑
i∈W,j∈H

fsoa + max(i∈W,j∈H)f
soa

(4)

After the aggregation, we whiten the aggregated represen-
tation for both refined local and global representations;
we integrate this into our model with two separated fully-
connected layers. The fully connected layer associated
with enhanced local representations Fl ∈ RCfsoa

l
×D

2 , with
learned bias bfsoa

l
∈ RCfsoa

l , which Cfsoa
l

indicates the
number of channels in the fsoa

l and D
2 is the dimension

of the local embedding space. Similarly, we have a fully
connected layer associated with enhanced global represen-
tations Fg ∈ RCfsoa

g
×D

2 , with learned bias bfsoa
g

∈ RCfsoa
g ,

which Cfsoa
g

indicates the number of channels in the fsoa
g

and D
2 is the dimension of the global embedding space.

After computing Fl ∈ RD/2 and Fg ∈ RD/2, the final
embedding F ∈ RD computes by concatenation of the Fl

and Fg .

3.4. A Hybrid Loss Function
Our loss is designed to overcome the limitation of

both proxy-based and pairwise-based models by introduc-
ing a hybrid loss involving the proxy-anchor [25] loss from
the proxy-based category and the MS [61] loss from the
pairwise-based class.

Proxy-based Loss. Proxy-anchor loss [25] assigns a proxy
to each class. Proxy-anchor approach considers each proxy
as an anchor and associate it with entire data in a batch to
find positive and negative samples. The proxy-anchor loss
defined as follows:

ℓp(X) =
1

|P+|
∑
p∈P+

log(1 +
∑

x∈X+
p

exp(−α(s(x, p)− δ)))

+
1

|P |
∑
p∈P

log(1 +
∑

x∈X−
p

exp(α(s(x, p) + δ))),

(5)

where δ > 0 is a margin, α > 0 is a scaling factor, P is
the set of all proxies, s(., .) measures the similarity among
its arguments ,and P+ indicates the set of positive proxies
of data in the batch. Also, for each proxy p, a batch of
embedding vectors X is divided into the set of positive X+

p

and negative X−
p = X −X+

p embedding vectors.
By utilizing the proxy-anchor loss we incorporate data-

to-proxy relations as well as fast convergence. For incorpo-
rating the data-to-data relation, we integrate the MS loss.

Pairwise-based Loss. We employ the MS loss [61] as
a pairwise-based loss since it considers the self, negative,
and positive similarities. Self-similarity ensures that the in-
stances belonging to a positive class remains closer to the
anchor than the instances associated with negative classes.
The positive similarity exclusively deals with positive pairs.
σ represents the similarity margin that controls the close-
ness of positive pairs by heavily penalizing those pairs
whose cosine similarities are less or equal to σ. The nega-
tive similarity ensures that negative samples have similarity
with the anchor as low as possible. The MS loss function is
formulated as follows:

ℓm(X) =
1

m

m∑
i=1

(
1

γ
log(1 +

∑
k∈Pi

exp(−γ(Si,k − σ)))

+
1

β
log(1 +

∑
k∈Ni

exp(β(Si,k + σ))),

(6)



Table 1. Recall@K (%) on the Cars-196 [29] and CUB-200-2011 [63] datasets. Superscripts indicate embedding sizes. Backbone networks
of the models are denoted by abbreviations: G–GoogleNet [51], BN–Inception with batch normalization [22], R50–ResNet50 [21]. For
each group of methods, the best performance is bolded and the second best is underlined.

Algorithms BackBone Cars-196 CUB-200-2011
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Clustering64 [40] BN 58.1 70.6 80.3 87.8 48.2 61.4 71.8 81.9
Proxy-NCA64 [36] BN 73.2 82.4 86.4 87.8 49.2 61.9 67.9 72.4
Smart Mining64 [20] G 64.7 76.2 84.2 90.2 49.8 62.3 74.1 83.3
MS64 [61] BN 78.6 86.6 91.8 95.4 60.1 71.9 81.2 88.5
Proxy-Anchor64 [25] R50 78.8 87.0 92.2 95.5 61.7 73.0 81.8 88.8
Ours64 R50 81.1 88.1 92.3 95.3 63.1 74.6 83.2 89.4
Margin128 [64] R50 79.6 86.5 91.9 95.1 63.6 74.4 83.1 90.0
Ours128 R50 84.9 90.6 94.0 96.6 66.6 77.1 85.2 91.3
HDC384 [67] G 73.7 83.2 89.5 93.8 53.6 65.7 77.0 85.6
A-BIER512 [45] G 82.0 89.0 93.2 96.1 57.5 68.7 78.3 86.2
ABE512 [27] G 85.2 90.5 94.0 96.1 60.6 71.5 79.8 87.4
HTL512 BN 81.4 88.0 92.7 95.7 57.1 68.8 78.7 86.5
RLL-H512 [62] BN 74.0 83.6 90.1 94.1 57.4 69.7 79.2 86.9
MS512 [61] R50 84.1 90.4 94.0 96.5 65.7 77.0 86.3 91.2
SoftTriple512 [46] BN 84.5 90.7 94.5 96.9 65.4 76.4 84.5 90.4
Proxy-Anchor512 [25] BN 86.1 91.7 95.0 97.3 68.4 79.2 86.8 91.6
ProxyNCA++512 [53] R50 86.5 92.5 95.7 97.7 69.0 79.8 87.3 92.7
Proxy-Anchor512 [25] R50 87.7 92.9 95.8 97.9 69.7 80.0 87.0 92.4
Ours512 R50 90.1 94.2 96.4 98.1 70.6 80.9 88.0 92.3

where γ, β, and σ are hyper-parameters. m is the number
of samples, Pi,Ni represents positive and negative samples,
and Si,j denotes the pairwise similarity between xi and xj .

Our Objective Function. Our hybrid objective function is
a combination of proxy-anchor and MS losses balanced by
normalization factor λ:

L = ℓm + λℓp (7)

4. Experimental Results
In this section, our method is compared with current

state-of-the-art methods on four public benchmark datasets
employed for deep metric learning [29, 63, 42, 31]. We
also perform a thorough investigation of local and global
features, the SOA, the MS loss and proxy-anchor loss, and
embedding dimensionality to study their effects on the pro-
posed method.

4.1. Dataset
We evaluated our model on the CUB-200-2011 [63],

Cars-196 [29], Stanford Online Product (SOP) [42] and In-
Shop Clothes Retrieval (In-Shop) [31] datasets. For CUB-
200-2011, we set aside 5,864 images of its first 100 classes
as a training set and 5,924 images of the other classes as a
test set. For Cars-196, 8,054 images of its first 98 classes
are set aside as a training set and 8,131 images of the other
classes are used as a test set. For SOP, we follow the stan-
dard dataset split in [43, 25, 53] using 59,551 images of

Table 2. Recall@K (%) on the SOP. Superscripts indicates embed-
ding sizes. For each group of methods, the best performance is
bolded and the second best is underlined.

Recall@K 1 10 100 1000
Clustering64 [40] 67.0 83.7 93.2 -
Proxy-NCA64 [36] 73.7 - - -
MS64 74.1 87.8 94.7 98.2
SoftTriple64 [46] 76.3 89.1 95.3 -
Proxy-Anchor64 [25] 76.5 89.0 95.1 98.2
Ours64 77.3 89.5 95.4 98.3
Margin128 [64] 72.7 86.2 93.8 98.0
Ours128 79.1 90.6 95.8 98.5
HDC384 [67] 69.5 84.4 92.8 97.7
A-BIER512 [45] 74.2 86.9 94.0 97.8
ABE512 [27] 76.3 88.4 94.8 98.2
HTL512 [16] 74.8 88.3 94.8 98.4
RLL-H512 [62] 76.1 89.1 95.4 -
MS512 [61] 78.2 90.5 96.0 98.7
SoftTriple512 [46] 78.3 90.3 95.9 -
Proxy-Anchor512 [25] 79.1 90.8 96.2 98.7
Proxy-NCA++512 [53] 80.7 92.0 96.7 98.9
Ours512 81.7 92.0 96.6 98.8

11,318 classes as a training set and the remaining 60,502
images as a test set. Also for In-Shop dataset, we follow
the setting in [25] to use 25,882 images of the first 3,997
classes as a training set and 28,760 images of the remaining



Table 3. Recall@K (%) on the In-Shop. Superscripts indicates em-
bedding sizes. For each group of methods, the best performance is
bolded and the second best is underlined.

Recall@K 1 10 20 40
HDC384 [67] 62.1 84.9 89.0 92.3
HTL128 [16] 80.9 94.3 95.8 97.4
MS128 [61] 88.0 97.2 98.1 98.7
Proxy-Anchor128 [25] 90.8 97.9 98.5 99.0
Ours128 90.9 97.9 98.6 98.9
FashionNet4096 [31] 53.0 73.0 76.0 79.0
A-BIER512 [45] 83.1 95.1 96.9 97.8
ABE512 [27] 87.3 96.7 97.9 98.5
MS512 [61] 89.7 97.9 98.5 99.1
Proxy-Anchor512 [25] 91.5 98.1 98.8 99.1
ProxyNCA++512 [53] 90.4 98.1 98.8 99.2
Ours512 93.1 98.3 99.0 99.2

classes for test set; the test set is further partitioned into a
query and gallery sets with 14,218 images of 3,985 classes
and 12,612 images of 3,985 classes, respectively. For all
datasets, we set aside 20% of the training set as a validation
set for hyper-parameter tuning [37].

4.2. Implementation Setup
Backbone: For a fair comparison [37] to recent works, the
Resnet50 [21] pre-trained on ImageNet classification [9] is
adopted as our backbone network.

Global and Local Features: For all experiments on
all datasets, we obtained the global features from
resnet50-conv5-x∈ R7×7×2084 layer and local features are
extracted from resnet50-conv4-x∈ R14×14×1024 .

Training: In all of the experiments, AdamW algorithm [32]
has been adopted and used as our optimizer. AdamW has
the same update step as Adam [28] with separate decays of
weights. In all experiments, our model is trained only for 20
epochs and the initial learning rate is fixed to 10−4. Note
that the learning rate for proxies is set to 10−2 for faster
convergence.

Proxy Setting: We assign a single proxy to each class as
suggested in Proxy-NCA [36] and Proxy-Anchor [25]. The
proxies are initialized with a normal distribution.

Input Setting: To have a fair comparison with state-of-the-
art methods, the input is re-scaled to 256 × 256 and then
center-cropped to 224 × 224. We used random cropping
and horizontal flipping during training as the data augmen-
tation strategy, as suggested in [25, 36]. During the test, the
images are only center-cropped. The default size of cropped
images is fixed to 224× 224 [37].

Hyperparameter Setting: ζ in Eq. 1 is set to 1. α and δ in
Eq. 5 is set to 32 and 10−1 respectively. γ, β, and σ in Eq. 6
are set to 2, 50, 1. Finally, λ in Eq. 7 is set to 3× 10−2, for

all experiments.

4.3. Comparison to Other Methods
We demonstrate the strength of our proposed method

quantitatively by evaluating its image retrieval performance
on four public benchmark datasets. For a fair compari-
son to the previous arts [37], the accuracy of our model is
computed in three different settings: we used 64, 128, and
512 embedding dimension on Cars-196, CUB-200-2011,
and SOP datasets with the default image size 224 × 224.
On the In-Shop dataset the performance is only measured
with embedding dimensions of 128 and 512 with the de-
fault image size 224 × 224. Results on the Cars-196 and
CUB-200-2011 datasets are exhibited in Table 1. Accord-
ing to Table 1, our model outperforms all the previous state-
of-the-art methods including the proxy-based [25, 36, 53],
pairwise-based [62, 61, 46] and ensemble methods [27] in
all three settings often with a large margin on top 1 re-
call. In particular, on the challenging Cars-196 dataset, our
method improves the previous best score by a large mar-
gin, 2.3%, 5.3%, and 2.4% in Recall@1 in embedding size
of 64, 128, and 512 respectively. As reported in Table 2,
our model also achieves state-of-the-art performance on the
SOP dataset. It outperforms previous methods in all cases
except for Recall@10 and Recall@100 in 64-dimensional
embedding, but even in these cases, it achieves the second
best. Finally, on the In-Shop dataset, it obtains the best
scores in all two settings as shown in Table 3. On the In-
Shop dataset, our model outperforms the state-of-the-art by
a large margin of 2.7% in Recall@1. In our experimental re-
sults, we noted that our model outperforms numerous state-
of-the-art methods even with low-dimensional embedding
vectors while they have higher embedding dimensions. This
observation suggests that our model is capable of learning a
more compact and effective embedding space. Last but not
least, our hybrid method converges in the same order as the
proxy-based method as results are summarized in Figure 1.

4.4. Qualitative Results
To further exhibiting the visual performance of our

method, we illustrate the qualitative retrieval results of our
model on four datasets in Figure 4. Note that these datasets
are challenging especially due to their large intra-class vari-
ations. For instance, the CUB200-2011 has a variety of
poses and background clutter, the Cars-196 has various col-
ors and shapes, and SOP and In-Shop datasets have chal-
lenging view-points of objects that make the retrieval tasks
even harder. In contrast to all of these challenges, our pro-
posed method performs robust retrieval.

4.5. Ablation Study
Local and Global Features. To investigate the impact of
the local and global features on the performance of our pro-
posed method, we examined the Recall@1 while training



Figure 4. Qualitative results on the Cars-196 (a) CUB-200-
201l (b), SOP (c), and In-Shop (d). For each query image (left-
most), top 4 retrievals are exhibited. The results with red bound-
aries are false cases but they are substantially similar to the query
images in terms of appearance. (rows 2,3,6, and 7).

our model with only local and global descriptors separately
on the Cars-196 and CUB-200-2011 datasets. The result of
the analysis is summarized in Figure 5 (a). This Figure illus-
trates the local descriptors on both Cars-196 and CUB-200-
2011 datasets are getting slightly better performance (2%)
than the global descriptors but neither of these descriptors
individually achieved the performance as the combination
of these descriptors obtained on both datasets based on Re-
call@1 performance (see Table 1).

Second-order Attention. One of the vital components of
our proposed method is SOA. We employ this attention
mechanism to further enhance deep features based on their
correlation. To evaluate the impact of the SOA, we trained
our model with and without having the SOA, and the re-
sults are summarized in Figure 5 (b). According to this fig-
ure, the performance of the model significantly improves
in terms of Recall@1 when the model is trained with SOA
especially on critical datasets like CUB-200-2011. This ob-
servation confirms our assumption on the essence of higher-

order attention for further enhancements of the representa-
tions. We visualize the effects of second-order attention in
Figure 6. This figure exhibits the attention map of samples
from Cars-196 and CUB-200-2011 datasets. For each im-
age, four parts have been selected with different stars and
different colors. The attention map associated with each
star has a border with identical colors. For locations in the
background, interestingly, the attention from that feature is
distributed within the main object in the image. It confirms
the second-order attention has learned to focus on the main
object in the image to accurately retrieve the most similar
images to the query. On the other hand, when the star is
located within the main object, the attention is on highly
distinctive regions.

A Single Head Attention. Our proposed method requires
two attention heads for local and global descriptors. We are
interested in probing a test case with having only a single
attentional head for both local and global descriptors. Af-
ter extracting local descriptor fl ∈ R14×14×1024 and global
descriptor fg ∈ R7×7×2048 from backbone, we use a focus
layer [5] to reshape the local descriptor fnew

l ∈ R7×7×4096

to spatially match the global descriptor. Then, we concate-
nate the global and local descriptors resulting in a com-
bined feature map f ∈ R∈7×7×6144. Then, we apply the
SOA for further enhancement of this feature map. We
evaluated this approach on Cars-196 and CUB-200-2011
datasets. The single head attention obtained 86.6% and
66.6% in terms of Recall@1 on Cars-196 and CUB-200-
2011, respectively. Note the obtained results are slightly
degraded from the multi-head approach 90.1% on Cars-196
and 70.6% on CUB-200-2011 (see Table 1), that suggests
the multi-head SOA is necessary.

Multisimilarity and Proxy-anchor Loss. The other cru-
cial component of our architecture is the combination of
pairwise-based and proxy-based loss functions. To study
the impact of each loss function on our proposed method,
we trained our model separately with MS loss and proxy
anchor loss and we evaluated the performance based on Re-
call@1 on Cars-196 and CUB-200-2011 datasets. The re-
sults is exhibited in Figure 7. This Figure demonstrates that
the combination of these two losses are crucial in our design
since none of them individually achieves our performance
(see Table 1).

Embedding Dimension. The dimension of embedding vec-
tors is a vital factor that controls the trade-off between speed
and accuracy in image retrieval systems. We thus investi-
gate the effect of embedding dimensions on the retrieval ac-
curacy in our method. We evaluated our model with embed-
ding dimensions varying from 64 to 2048 following the ex-
periment in [61, 25]. The result of the analysis is illustrated
in Figure 8, in which the retrieval performance of our model
is reported on both Cars-196 and CUB-200-2011 dataset.
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Figure 5. (a): The impact of local and global descriptors in terms of Recall@1 performance on both Cars-196 and CUB-200-2011 datasets.
The blue and green colors illustrate the performance of the global and local descriptors, while the red indicates the performance of the
combined global and local descriptors. The (a) part of this figure demonstrates the combination of local and global features are vital in
our design. (b): The impact of the SOA component on the mentioned datasets. The blue color exhibits the model without second-order
attention and red depicts the model with second-order attention.

Cars196 CUB-200-2011

Figure 6. Qualitative examples of SOA maps on the Cars-196 and CUB-200-2011 datasets. (a) corresponds to Cars196 dataset and (b)
corresponds to CUB-200-2011 dataset. Each row depicts the source image and four corresponding SOA maps obtained for specific spatial
locations (marked by stars).
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Figure 7. The impact of the MS and Proxy-Anchor loss on Cars-
196 and CUB-200-2011 datasets. The red color indicates our hy-
brid loss while the green and blue represent the Proxy-Anchor and
MS losses, respectively. The Figure demonstrates the combination
of two losses is crucial in our proposed method.
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Figure 8. Accuracy in terms of Recall@1 versus embedding di-
mension on both Cars-196 and CUB-200-2011 datasets.

The performance of our loss is fairly stable when the di-
mension is equal to or larger than 128. The performance
of our model on the Cars-196 dataset improves until reach-

ing 1024 dimensional embedding and after that slightly de-
grades. On the other hand, the performance consistently
increases with the embedding dimension on the CUB-200-
2011 dataset showing that more information on that dataset
helps the retrieval performance.

5. Conclusion
We have proposed a novel metric learning algorithm

that takes the best of both proxy-based and pairwise-based
losses. Also, it leverages enhanced local and global descrip-
tors to improve the recall and precision simultaneously. Our
method benefits from having a reach data-to-data relation
as well as fast and reliable convergence. We extensively
evaluated our model on 4 public benchmarks and our model
has achieved state-of-the-art performance on all datasets in
terms of Recall@1 accuracy. Also, our model converged
quickly without any careful data sampling technique.
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