
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

End-to-End Sound Classification On Loihi Neuromorphic Chip

Inception Nucleus

Network Architecture

Mohammad K. Ebrahimpour1,2, Timothy M. Shea2, Andreea Danielescu2,
David C. Noelle1, Christopher T. Kello1

Filter Visualization

Results

1University of California, Merced, 2Accenture Labs

Table 1. Our proposed deep neural networks architectures. Each column belongs to a network. The third row indicated number
of parameters.The convolutional layer parameters are denoted as “conv (1D or 2D),(number of channels),(kernel size),(stride)”.
Also layers with batch normalization denote as BN.

Inception Nucleus Nets Configurations
Inception Inception-FA Inception-FI Inception-BN

289 K 789 K 479 K 292 K
Input (32000⇥ 1)

Conv1D,32,80,4 Inception Nucleus: Conv1D,32,80,4 with BN
Conv1D,32,60,4

Conv1D,[32,80,4]⇥2
Conv1D,[32,100,4]⇥2

Inception Nucleus: Inception Nucleus: Inception Nucleus: Inception Nucleus:
Conv1D,64,4,4 Conv1D,64,20,4 Conv1D,64,4,4 Conv1D,64,4,4 - BN

Conv1D,[64,8,4]⇥2 Conv1D,[64,40,4]⇥2 Conv1D,[64,8,4]⇥2 Conv1D,[64,8,4]⇥2-BN
Conv1D,[64,16,4]⇥2 Conv1D,[64,60,4]⇥2 Conv1D,[64,16,4]⇥2 Conv1D,[64,16,4]⇥2-BN

Max Pooling 1D, 64,10,1
Reshape (put the channels first)

Conv2D,32,3⇥ 3,1 Conv2D,32,3⇥ 3,-BN
Max Pooling 2D,32,2⇥ 2,2

Conv2D,64,3⇥ 3,1 Conv2D,64,3⇥ 3,1-BN
Conv2D,64,3⇥ 3,1 Conv2D,64,3⇥ 3,1-BN

Max Pooling 2D,64,2⇥ 2,2
Conv2D,128,3⇥ 3,1 Conv2D,128,3⇥ 3,1-BN

Max Pooling 2D,128,2⇥ 2,2
Conv2D,10,1⇥ 1,1 Conv2D,10,1⇥ 1,1-BN

Global Average Pooling
Softmax

Fig. 1. Inception nucleus. The input comes from the previ-
ous layer and is passed to 1D convolutional layers with kernel
sizes of 4, 8, and 16 to capture a variety of features. The con-
volutional layer parameters are denoted as “conv1D,(number
of channels),(kernel size),(stride)”. All of the receptive fields
are concatenated channel-wise in the concatenation layer.

alizations to reveal wavelet-like transforms in early layers,
supporting deeper representations that are discriminative and
meaningful, even with reduced dimensionality.

2. PROPOSED METHOD
Our proposed end-to-end neural network takes time-domain
waveform data — not engineered representations — and pro-
cesses it through several 1D convolutions, inception nucleus,
and 2D convolutions to map the input to the desired outputs.
The details of the the proposed architectures are described in
Table 1. The overall design can be summarized as follows:

Fully Convolution Network. We propose an inception nu-
cleus convolution layer that contains a series of 1D convolu-
tional layers followed by nonlinearities (i.e., ReLU layer) to
reduce the sensitivity of the architecture to kernel size. Con-
volutional networks are well-suited for audio signals for the
following reasons. First, similar to images, we desire our net-
work to be translation invariant to reduce the number of pa-
rameters efficiently. Second, convolutional networks allow
us to stack layers, which gives us the opportunity to detect
higher-level concepts through a series of lower-level detec-
tors. We used Global Average Pooling (GAP) in our archi-
tectures to aggregate the spatial information in the last con-
volutional layer and map this information onto class labels.
GAP greatly reduces the number of parameters to make the
network relatively light to implement.

Variable Length Input/Output. Since sound can vary in
temporal length, we want our network to handle variable-
length inputs. To do this, we use a fully convolutional net-
work. As convolutional layers are invariant to location, we
can convolve each layer based on the length of the input.
The input layer to our network is a 1D array, representing the
audio waveform, which is denoted as X 2 R32000⇥1, since
the audio files are about 4 seconds, and the sampling rate was
set to be 8 kHz. The network is designed to learn a set of pa-
rameters, !, to map the input to the prediction, Ŷ , based on
nested mapping functions, given by Eq 1.

Ŷ = F (X|!) = fk(...f2(f1(X|!1)|!2)|...!k) (1)

where k is the number of hidden layers and fi is a typical

Results on Urbansound 8k Dataset

convolution layer followed by a pooling operation.

Inception Nucleus Layer. We propose the use of an incep-
tion nucleus to produce a more robust architecture for sound
classification. This approach also makes the architecture less
sensitive to idiosyncratic variance in audio files. A schematic
representation of the inception nucleus appears in Fig 1. The
input to the inception nucleus is the receptive field of the
previous layer. Then, three 1D convolutions with different
kernels are applied to the input to capture a variety of fea-
tures. We test the following kernel sizes in our experiments:
4, 8, 16, 20, 40, 60, 80, 100. (See Section 3.) After obtaining
the receptive fields from our convolutional layers, we con-
catenate the receptive fields in a channel-wise manner.

Reshape. After applying 1D convolutions on the waveforms
and obtaining low-level features, the receptive field, L, will
be 2 R1⇥m⇥n. We can treat L as a grayscale image with
width=m, height=n, and channel=1. For simplicity, we trans-
pose the tensor L to L0 2 Rm⇥n⇥1. From here, we apply
normal 2D convolutions with the VGG standard kernel size
of 3⇥ 3 and stride = 1 [1]. Also, the pooling layers have ker-
nel sizes = 2 ⇥ 2 and stride = 2. We also implemented the
inception nucleus with batch normalization to analyze the ef-
fect of batch normalization on our approach, as explained in
Section 3.

Global Average Pooling (GAP). In the last convolutional
layer we compute GAP to aggregate the most abstract fea-
tures over the spatial dimensions and reduce the number of
outputs to class labels. We use GAP instead of max pooling to
reduce the number of parameters and avoid adding fully con-
nected layers at the end of the network. It has been noted in
the computer vision literature that aggregating features across
spatial locations and channels keeps important information
while reducing the number of parameters [13, 14]. We in-
tentionally did not use fully connected layers with a softfmax
activation function to avoid overfitting, since fully connected
layers greatly increase the number of parameters. GAP was
implemented as follows:

GAPc =
1

w ⇥ h

X

i,j

A(i, j, c) (2)

where w, h, c are width, height, and channel of the last recep-
tive field (A).

3. EXPERIMENTAL RESULTS
We tested our network on the UrbanSound8k dataset which
contains 10 kinds of environmental sounds in urban areas,
such as drilling, car horn, and children playing [15]. The
dataset consists of 8732 audio clips of 4 seconds or less, to-
talling 9.7 hours. We padded zeros to the samples that they
were less than 4 seconds.To speed computation, the audio
waveforms were down-sampled to 8 kHz and standardized to
zero mean and unit variance. We shuffled the training data to

Table 2. Accuracy of different approaches on the Urban-
Sound8k dataset. The first column indicates the name of the
method, the second column is the accuracy of the model on
the test set, the third column reveals the number of parame-
ters. It is clear that our proposed method has the fewest num-
ber of parameters and achieves the highest test accuracy.

Model Test # Parameters

M3-fc [9] 46.82% 129M
M5-fc [9] 62.76% 18M
M11-fc [9] 68.29% 1.8M
M18-fc [9] 64.93% 8.7M
M18-fc [9] 64.93% 8.7M
RCNN [19] 71.68% 3.7M

ACLNet [11] 65.32% 2M
EnvNet-v2 [20] 78% 101M
PiczakCNN [21] 73% 26M

VGG [22] 70% 77M
Inception Nucleus-BN (Ours) 83.2% 292K
Inception Nucleus-FA (Ours) 70.9% 789K
Inception Nucleus-FI (Ours) 75.3% 479K

Inception Nucleus (Ours) 88.4% 289K

enhance variability in the training set.
We trained the CNN models using the Adam [16] optimizer,
a variant of stochastic gradient descent that adaptively tunes
the step size for each dimension. We used glorot weight ini-
tialization [17] and trained each model with batch size 32 for
up to 300 epochs until convergence.
To avoid overfitting, all weight parameters were penalized by
their `2 norm, using a � coefficient of 0.0001. Our models
were implemented in Keras [18] and trained using a GeForce
GTX 1080 Ti GPU.
Table 2 provides classification performance on the testing set
along with numbers of parameters used for the Urbansound8k
dataset. The table shows that our CNN outperformed other
methods in terms of test classification accuracy, with the
fewest number of parameters. Preliminary simulations re-
vealed that fully connected layers at the end of the network
caused overfitting due to an explosion in the number of weight
parameters. These preliminary results led us to use a fully
convolutional network with a reduced number of parameters.
We note that the deeper networks (M5, M11, and M18) can

improve performance if their architectures are well-designed.
However, our inception nucleus model is 88.8% accurate,
which outperforms the reported test accuracy of CNNs on
spectrogram input using the same dataset by a large mar-
gin [21]. Also, inception nucleus-FI achieves very good
results in terms of both accuracy and number of parameters.
This result suggests that if we let the network learn use-
ful features for the desired task in the convolutional layers,
recognition performance and generalization is improved over
pre-engineered features.

Adapting Network Architecture For Loihi Hardware

Conversion to Loihi involved 4 key network
architecture adaptations:

• Replace Max pooling to Average Pooling
• Reduce the input dimension from 32K to 8K
• Replacing the global average pooling to flatting

and a dense layer
• Reducing total parameters from 292K to 143K

• We proposed a novel Inception block to tune kernel sizes
on the fly during training!

The proposed Inception Nucleus architectures with/without
Batch Normalization:

Comparing our model with the state-of-the-art approaches:

Visualization of the filters in the first layer reveals the network is learning wavelet-like filters. We demonstrate 12
random filters here.

We applied t-SNE on the most abstract features. It exhibits
the network has learned semantically meaningful concepts.

We are analyzing the early filters as well as deep filters to see what has been learned.

Benchmarking Keyword Spotting Efficiency on Neuromorphic Hardware

Peter Blouw Xuan Choo Eric Hunsberger Chris Eliasmith

Applied Brain Research, Inc.
Waterloo, ON, Canada

Correspondence: {peter.blouw, xuan.choo, eric.hunsberger, chris.eliasmith}@appliedbrainresearch.com

Abstract

Using Intel’s Loihi neuromorphic research chip
and ABR’s Nengo Deep Learning toolkit, we an-
alyze the inference speed, dynamic power con-
sumption, and energy cost per inference of a two-
layer neural network keyword spotter trained to
recognize a single phrase. We perform compar-
ative analyses of this keyword spotter running
on more conventional hardware devices includ-
ing a CPU, a GPU, Nvidia’s Jetson TX1, and
the Movidius Neural Compute Stick. Our re-
sults indicate that for this real-time inference ap-
plication, Loihi outperforms all of these alterna-
tives on an energy cost per inference basis while
maintaining equivalent inference accuracy. Fur-
thermore, an analysis of tradeoffs between net-
work size, inference speed, and energy cost in-
dicates that Loihi’s comparative advantage over
other low-power computing devices improves for
larger networks.

1. Introduction

Neuromorphic hardware consists of large numbers of
neuron-like processing elements that communicate in par-
allel via spikes. The use of neuromorphic devices can pro-
vide substantial improvements in power efficiency and la-
tency across a wide range of computational tasks. These
improvements are largely due to (a) an event-driven model
of computation that results in processing elements only
emitting spikes (and thereby consuming energy) when nec-
essary, and (b) a substantial amount of architectural par-
allelism that reduces the number of computational ‘steps’
required to transform an input into an output.

To provide a quantitative analysis of these expected ben-
efits, we present the results of benchmarking a keyword
spotting model running on Intel’s new neuromorphic re-
search processor, Loihi (Davies et al., 2018). Keyword
spotting involves monitoring a real-time audio stream for
the purposes of detecting some keyword of interest (e.g.

Figure 1. Dynamic energy cost per inference across hardware de-
vices. This metric is equal to the difference between the total
energy consumed by the hardware device over the time it takes to
perform one inference minus the energy consumed over the same
amount of time while the hardware is idling. For the keyword
spotter, one inference involves passing a feature vector through a
feed-forward neural network with two hidden layers to predict a
probability distribution over alphabetical characters.

“Hey Siri”). This task is useful for benchmarking neuro-
morphic devices because it (a) requires low-latency pro-
cessing of real-time input signals, (b) benefits considerably
from improvements in energy efficiency, and (c) has nu-
merous practical applications in mobile and IoT devices.

To investigate the relative power efficiency of different
types of hardware running our keyword spotter, we perform
experiments using the following devices: CPU (Xeon E5-
2630), GPU (Quadro K4000), Jetson TX1, Movidius NCS,
and Loihi (Wolf Mountain board). Below, the methodol-
ogy for each experiment is reported, along with a detailed
discussion of results. The same inference-only version of

ar
X

iv
:1

81
2.

01
73

9v
2

 [c
s.L

G
]

2
A

pr
 2

01
9

A typical titan GPU needs nearly
110x more energy than a Loihi for
the inference.

Power Benchmarks on Neuromorphic Hardware

Table 1. Mean power consumption and energy cost per inference across hardware devices.

HARDWARE IDLE (W) RUNNING (W) DYNAMIC (W) INF/SEC JOULES/INF

GPU 14.97 37.83 22.86 770.39 0.0298
CPU 17.01 28.48 11.47 1813.63 0.0063
JETSON 2.64 4.98 2.34 419 0.0056
MOVIDIUS 0.210 0.647 0.437 300 0.0015
LOIHI 0.029 0.110 0.081 296 0.00027

the keyword spotter running in TensorFlow (TF) is used in
each non-spiking benchmark, achieving a test classification
accuracy of 92.7% across all hardware devices on a small
dataset of spoken utterances we collected. A model that
is architecturally identical to this TF model is then trained
to work in the spiking domain (Hunsberger & Eliasmith,
2016) and run with the Nengo neural simulator (Beko-
lay et al., 2014), achieving a test classifcation accuracy of
93.8% both in simulation and when running on Loihi.

Overall, our comparisons indicate that Loihi is more power
efficient on a cost-per-inference basis than alternative hard-
ware devices in the context of this keyword spotting appli-
cation (see Figure 1 and Table 1), and more generally in the
context of similar deep learning applications.

In the remainder of this paper we describe the network
and training methods in more detail, discuss our data col-
lection methods, and present and discuss in-depth results.
Code for reproducing our results is available at https:
//github.com/abr/power_benchmarks/.

2. Methodology

The purpose of the keyword spotting network is to take
in an audio waveform corresponding to an utterance, and
then predict a sequence of characters to ascertain whether
the utterance contains some keyword of interest. The au-
dio waveform is preprocessed by performing Fourier trans-
forms on an overlapping series of windows to compute
Mel-frequency Cepstral Coefficient (MFCC) features for
each window. Windows of adjacent MFCC features are
concatenated into frames and passed as input to the net-
work, with the frames having a stride of 10ms.

Once a frame (390 dimensions) is provided as input to the
network, it is passed through two 256-dimensional hidden
layers and then used to predict a 29-dimensional output
vector that corresponds to a probability distribution over
alphabetical characters. Figure 2 provides a visual depic-
tion of this network topology. Passing all frames derived
from the initial audio waveform through the network yields
a sequence of character predictions that gets collapsed by
merging repeated characters and stripping out special char-

Figure 2. Network topology for the keyword spotter run on all de-
vices. All implementations of the network make use of the same
TensorFlow computational graph and parameters, with the excep-
tion of the Loihi implementation, which has the same network
structure but is run in spiking mode with Nengo. On all devices,
audio features are passed to the input layer and probability distri-
butions over characters are read from the output layer, ensuring
that identical amounts of computation are performed across all
comparisons.

acters corresponding to letter repetitions and silence.

We are interested in comparing the energy cost per infer-
ence for the keyword spotter on different kinds of hard-
ware. To do this for all non-Loihi devices, we make use
of a single script that runs a loop that performs a single
forward pass of the model per iteration. The script does
not change across trials; only the hardware targeted by the
inference call in the loop does. We then run the loop for
a specified duration of time (15 minutes) while a logging
script is running in the background to write power readings
to a CSV file every 200ms. A timestamp is saved upon en-
tering and exiting the loop, and these time stamps are used
to extract the corresponding range of power readings from
the CSV file. We track the total number of inferences per-
formed over the loop execution, and compute the average
number of inferences performed per power reading (i.e., in-
ferences per 200ms). By default, the batchsize is one, so a
forward pass performs one inference; it is possible to ad-
just the batchsize, in which case the number inferences is
calculated as the product of the number of loop iterations
and the batchsize. As shown in Figure 3, batching can sig-
nificantly improve power efficiency on a cost-per-inference
basis, but can generally only be done in cases involving
offline data analysis (since real-time data streams are typ-

Mean power consumption and energy cost per inference across hardware devices.
Summary:

• We proposed a novel end-to-end architecture that
takes a raw waveform input and maps it to labels
without any feature extraction.

• We analyzed the learned filters and we noticed that
the network in the very beginning is learning wavelet-
like filters and deeper representations are semantically
meaningful.

• We translate the network on the Loihi neuromorphic
chip with some modifications.

• The results suggest that Loihi chips are very efficient
in power since they are nearly 110x more efficient
than GPUs on the inference.

Translated network architecture. We Train the network using Gpus and then translating the learned network to spiking neural
network and we will port it on the Loihi chip.

Port to Loihi

Trained ANN Converting to SNN Ready To InferenceMap to Loihi

