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Abstract. Deep Convolutional Neural Networks (CNNs) have been re-
peatedly shown to perform well on image classification tasks, successfully
recognizing a broad array of objects when given sufficient training data.
Methods for object localization, however, are still in need of substantial
improvement. In this paper, we offer a fundamentally different approach
to the localization of recognized objects in images. Our method is pred-
icated on the idea that a deep CNN capable of recognizing an object
must implicitly contain knowledge about object location in its connec-
tion weights.We provide a simple method to interpret classifier weights
in the context of individual classified images. This method involves the
calculation of the derivative of network generated activation patterns,
such as the activation of output class label units, with regard to each in-
put pixel, performing a sensitivity analysis that identifies the pixels that,
in a local sense, have the greatest influence on internal representations
and object recognition. These derivatives can be efficiently computed
using a single backward pass through the deep CNN classifier, produc-
ing a sensitivity map of the image. We demonstrate that a simple linear
mapping can be learned from sensitivity maps to bounding box coordi-
nates, localizing the recognized object. Our experimental results, using
real-world data sets for which ground truth localization information is
known, reveal competitive accuracy from our fast technique.
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1 Introduction
Deep Convolutional Neural Networks (CNNs) have been shown to be effective
at image classification, accurately performing object recognition even with thou-
sands of object classes when trained on a sufficiently rich data set of labeled
images [11]. One advantage of CNNs is their ability to learn complete functional
mappings from image pixels to object categories, without any need for the ex-
traction of hand-engineered image features [17]. To facilitate learning through
stochastic gradient descent, CNNs are (at least approximately) differentiable
with regard to connection weight parameters.

Image classification, however, is only one of the problems of computer vision.
In the task of image classification, each image has a single label, associated with
the class identity of the main object in the image, and the goal is to assign correct
labels in a manner that generalizes to novel images. This can be accomplished
by training a machine learning classifier, such as a CNN, on a large data set
of labeled images [4]. In the object localization task, in comparison, the output
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Fig. 1. Examples of sensitivity maps, displaying the sensitivity of network internal
representations to individual pixels, providing information about the locations of the
main objects in the source images.

for a given image is not a class label but the locations of a specified number
of objects in the image, usually encoded as bounding boxes. Evaluation of an
object localization system generally requires ground truth bounding boxes to
compare to the system’s output. The object detection task is more difficult than
the localization task, as the number of objects is not predetermined [17].

In this paper, we focus on object localization, identifying the position in the
image of a recognized object. As is common in the localization literature, posi-
tion information is output in the form of a bounding box. Previously developed
techniques for accomplishing this task generally involve searching the image for
the object, considering many candidate bounding boxes with different sizes and
locations, sometimes guided by an auxilliary algorithm for heuristically identi-
fying regions of interest [17,8,10]. For each candidate location, the sub-image
captured by the bounding box is classified for object category, with the final
output bounding box either being the specific candidate region classified as the
target object with the highest level of certainty or some heuristic combination of
neighboring or overlapping candidate regions with high classification certainty.
These approaches tend to be time consuming, often requiring deep CNN classifi-
cation calculations of many candidate regions at multiple scales. Efforts to speed
these methods mostly focus on reducing the number of regions considered, typ-
ically by using some heuristic region proposal algorithm [8, 14, 10].

A noteworthy alternative approach is to directly train a deep CNN to pro-
duce outputs that match ground truth localization bounding boxes, using a large
image data set that provides both category and localization information for each
image. It appears as if some form of this method was used with AlexNet [11],
though details concerning localization, rather than image classification, are dif-
ficult to discern from the published literature. A natural approach would be to
cast the learning of bounding boxes as a simple regression problem, with tar-
gets being the four coordinates that specify a bounding box (e.g., coordinates
of upper-left and lower-right corners, or region center coordinates along with re-
gion width and height). It is reasonable to consider sharing early layers of a deep
CNN, such as those performing convolution and max pooling, between both an
image classification network and an object localization network. Indeed, taking
such a multitask learning approach [2] can allow for both object category and
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object location training data to shape connection weights throughout the net-
work. Thus, the deep CNN would have “two heads”, one for image classification,
using a classification cross-entropy loss function, and one for object localization,
reducing the 5 norm between ground truth and predicted bounding box coor-
dinates [11]. While this approach can produce a network that quickly outputs
location information, extensive training on large data sets containing ground
truth bounding box information is necessary to produce good generalization.

In this paper, we introduce an approach to object localization that is both
very fast and robust in the face of limited ground truth bounding box training
data. This approach is rooted in the assertion that any deep CNN for image
classification must contain, implicit in its connection weights, knowledge about
the location of recognized objects [16]. The goal, then, is to interpret the flow of
activation in an object recognition network when it is performing image classifi-
cation so as to extract information about object location. Furthermore, the goal
is to do this quickly. Thus, this approach aims to leverage location knowledge
that is already latent in extensively trained and tuned image classification net-
works, without requiring an additional complex learning process for localization.

Our method makes use of the notion of a sensitivity analysis [21]. We pro-
pose estimating the sensitivity of the category outputs, or activation patterns
at internal network layers, of an image classification CNN to variance in each
input pixel, given a specific input image. The result is a numeric value for each
pixel in the input image that captures the degree to which small changes in that
pixel (locally, around its current value) give rise to large changes in the output
category. Together, these numeric values form a sensitivity map of the image,
encoding image regions that are important for the current classification. Our pro-
posed measure of sensitivity is the partial derivative of activity with regard to
each pixel value, evaluated for the current image. For a deep CNN that formally
embodies a differentiable mapping (at least approximately) from image pixels
to output categories, this partial derivative can be quickly calculated. While
many tools currently exist for efficiently calculating such derivatives, we provide
a simple algorithm that computes these values through a single backward pass
through the image classification network, similar to that used to calculate unit
error (delta) values in the backpropagation of error learning algorithm [15]. Thus,
we can generate a sensitivity map for an image in about the same amount of
time as it takes the employed image classification network to produce an output.
Some example sensitivity maps are shown in Figure 1.

The idea of using sensitivity information, like that in our sensitivity maps,
for a variety of tasks, including localization, has previously appeared in the liter-
ature [19, 23, 16]. Indeed, some of these past efforts have used more sophisticated
measures of sensitivity. In this paper, we show that even our very simple sen-
sitivity measure can produce strong localization performance, and it can do so
quickly, without any modifications to the classification network, and even for
object categories on which the classification network was not trained. The re-
lationship of the results reported here to previously reported work is discussed
further in Section 4.
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As previously mentioned, object localization methods typically encode ob-
ject location as a bounding box. Since our sensitivity maps encode location
differently, in terms of pixels, we propose learning a simple linear mapping from
sensitivity maps to bounding box coordinates, allowing our method to output a
bounding box for each classified image. We suggest that this linear mapping can
be robustly learned from a relatively small training set of images with ground
truth bounding boxes, since the sensitivity maps form a much more simple input
than the original images.

The primary contributions of this paper may be summarized as follows:

— We propose a new general approach to performing object localization, in-
terpreting a previously trained image classification network by performing
a sensitivity analysis, identifying pixels to which the category output, or a
more general internal representation, is particularly sensitive.

— We demonstrate how a linear function from the resulting sensitivity maps
to object location bounding box coordinates may be learned from relatively
small set of training images containing ground truth location information.

— We provide a preliminary assessment of our approach, measuring object lo-
calization performance on the ImageNet and PASCAL VOC data sets using
the VGG16 image classification CNN, showing strong accuracy while main-
taining short computation times.

2 Method

Calculating Pixel Sensitivities in a Trained CNN. Calculating derivatives
of a function of network output with regard to network parameters, such as con-
nection weights, is a standard part of CNN training. It is common for learning
in a deep CNN to involve stochastic gradient decent, which involves such deriva-
tives. In that case, the derivatives are of an objective function with regard to
connection weight values. In image classification networks, the objective func-
tion is designed to have optima where training images are correctly classified.
In the case of object localization, a similar objective function could be designed
to minimize differences between output bounding box coordinates and provided
ground truth bounding box coordinates, for all images in an appropriately la-
beled training set. For example, given N training images, stored in the matrix
X, with the ground truth 4-dimensional bounding box vector for image x; being
yi, and G(x;;w) being the CNN output vector for image z; given connection
weights w, an appropriate loss function would be:

1 N
(X, w) = NZII%—G(%;W)\@ (1)

The CNN will produce good estimates of the training image bounding boxes
when this loss function is minimized with regard to w. Network weight param-
eters that minimize this loss, w*, may be sought through stochastic gradient
decent, incrementally updating w according to the gradient of ¢(X,w) with re-
gard to w. A primary drawback of this approach is that it requires a large and
representative sample of images with ground truth bounding box information.
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Consider that, once weights are found, the gradient of ¢(X, w*) with regard
to X would provide information about the sensitivity of the bounding box loss
function with regard to the pixels in the images. This gradient can be calculated
as efficiently as the gradient of the loss with regard to the weights, with both
depending on the gradient of G(x;; w) with regard to a subset of its arguments.
This means that the gradient of G(x;; w*) with regard to x; can be efficiently
computed, and that gradient would capture the sensitivity of bounding box coor-
dinates with regard to the specific pixels in image x;. Note that this gradient can
be calculated for images beyond those in the training set. Knowing which pixels
in a novel image play an important role in determining the bounding box pro-
vides useful information for object localization. Using this calculation to address
the object localization task makes little sense, however, as G(x;; w*) provides
an estimate of object location without a need to consider pixel sensitivity.

Rather than training a deep CNN to output bounding boxes, requiring ex-
tensive labeled data, we propose calculating the same gradient for a different
network — one successfully trained to perform image classification. If we now
see G(x;;w*) as the output of such an image classification network, its gradi-
ent with regard to x; would provide information about the sensitivity of the
assigned category to individual pixels. Pixels with the largest absolute values of
this derivative will, around the input x;, produce the largest changes in the clas-
sification decision of the CNN. This can be seen as one measure of how important
pixels are for classifying the object in the image. Consider that the object class
output is not immediately affected by changes to pixels with a derivative of zero.

The calculation of this gradient can be performed as efficiently as a single
“backward pass” through the classification network. This is well illustrated by
considering the case of a simple layered backpropagation network [15] in which
the “net input” of unit 4, 7;, is a weighted sum of the activations of units in
the previous layer, and the activation of unit ¢ is g(7;), where g(-) is the unit
activation function. In this case, we can define a sensitivity value for each unit,
s;, as the derivative of the network output with regard to 7;. Using the chain
rule of calculus, it is easy to show that the sensitivity of an output unit is ¢’(ni),
and, for units in earlier layers the gradients are computed as follows:

si = g'm) > whi sk (2)
k

where k iterates over all units in the immediately downstream layer from unit 4
and wy; is the connection weight from unit ¢ to unit k. This calculation may be
performed, layer by layer, from outputs to inputs, until s; values for each pixel
input unit are available.

This demonstrates how efficiently pixel sensitivity values can be calculated
for a given classified image. Of course, there are currently a variety of software
packages that include tools for calculating gradients. In the evaluation of our
approach in Section 3, we report results using the tools provided by TensorFlow
[1].

Sensitivity of the Attention Map. We have proposed using a previously
trained image classification network as a source of information about object
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location, focusing on the gradient of the network output with regard to image
pixels. It is interesting to note that it might not be necessary to perform the
sensitivity calculation using the full classification network. There is a growing
body of research that suggests that, in a well trained image classification CNN,
the features that are extracted at the “attention map” layer (i.e., the output of
the last convolutional layer) tend to be generally useful for learning a variety
of image analysis tasks [13,5]. Inspired by these results, we have investigated
the possibility of substituting the gradient of the classifier output with regard
to pixels with the gradient of the attention map with regard to pixels. This
avoids calculations involving final fully connected layers and any classification
softmax layer. Generating image sensitivity maps from the attention map layer
is slightly faster than our original proposal, but, more importantly, it is possible
that general knowledge about object location might be found in the attention
map, and using the attention map as the basis of the sensitivity map might
actually generalize beyond the categories on which the image classiciation CNN
was trained. We have not yet done a formal comparison of these two approaches
to constructing the sensitivity map, but example results using both approaches
are reported in Section 3. When computing these gradients, we refer to the
aggregated values of the last convolutional layer as the Gestalt Total, which is
computed as follows [6].

1 o
GT = W;An(zajvk) (3)

where A,, is the activation map of the last convolution layer.

Aggregating Across Color Channels. The sensitivity map calculations that
have been described, so far, provide a scalar sensitivity value for each input to
the image classification deep CNN. Color images, however, are regularly pro-
vided to such networks using multiple inputs per image pixel, often encoding
each pixel over three color channels. Thus, the gradient calculation will actu-
ally produce three sensitivity values for each pixel. Since we hope to produce a
sensitivity map that focuses in a general way on location information, it seems
reasonable to aggregate the three sensitivity values into one. Since the direction
of the sensitivity relationship with the class output is irrelevant, a good first step
is to take the absolute value of each derivative. Given that dependence on even a
single color channel suggests that a pixel is important for identifying the object,
an argument can be made that a pixel should be labeled with the maximum of
the three absolute derivatives. Alternatively, it could be argued that all color
channels should be taken into account when producing the sensitivity map, in
which case it might be better to average the three absolute derivatives. We have
explored both of these aggregation methods, with results appearing in Section 3.
Learning to Produce Bounding Boxes. Object localization algorithms typi-
cally output the four coordinates of a bounding box to communicate the location
of the target object. Such a bounding box is not intrinsic to a sensitivity map,
however. Heuristic techniques could be used to identify a rectangular region that
captures the majority of the high sensitivity pixels, while avoiding low sensitivity



Fast Object Localization via Sensitivity Analysis 7

pixels, but we have taken a different approach. We have opted to learn a lin-
ear mapping from sensitivity maps to bounding box coordinates, using training
images with ground truth location information.

It is important to note that learning this mapping is not the same as learning
to map from the original images to bounding box coordinates, as has been done
in some other object localization systems. Sensitivity maps contain much less
information than the original images, so using the sensitivity maps as inputs
both reduces the dimensionality of the input to this mapping and makes for a
more simple functional relationship between pixels and bounding box coordi-
nates. We expect that this simplification will allow the mapping to bounding
box coordinates to be successfully learned using a far smaller set of training im-
ages labeled with ground truth object locations. Indeed, we expect that a simple
linear mapping could perform well.

Formally, we define the parameters of the linear mapping to the four bounding
box coordinates as a 4 x M matrix, W, (where M is the number of pixels in
an image) and a 4-dimensional vector of “bias weights”, w. Given a sensitivity
map, s, the output is (Ws + ). Given a training set of N images, the mapping
is found by minimizing the following objective function with regard to W and

1
N

w:
IBij — (Ws;i + )13 (4)
i=1 = j=1

>~ =

where s; is the sensitivity map for the i*" image, and B; ; is the j'" coordinate
of the bounding box for the i** image. This learning process amounts to four
independent linear regression problems, which can be solved efficiently.

Once learned, mapping from sensitivity maps to bounding box coordinates
can be done very quickly. With sensitivity map formation requiring only a single
backward pass through the image classification network, the whole process — from
image, to classification, to sensitivity map, to bounding box — can be performed
in little more than twice the time it takes for the network to do object recognition.

3 Results

The code and the sensitivity maps for the ImageNet and PASCAL VOC datasets
will be publicly available.

Data Sets & Performance Measures. We evaluated our proposed method for
object localization on two challenging data sets: the PASCAL VOC 2007 [7] data
set and the ImageNet 2012 [4] data set. The PASCAL VOC 2007 data set was
selected due to its use in the existing object localization literature. The ImageNet
data set is one of the largest publicly available data sets. It also contains many
images annotated with ground truth bounding boxes.

We followed the literature with regard to the evaluation criterion applied to
our method, using CorLoc, which has been used for weakly supervised localiza-
tion. The CorLoc metric is defined as the percentage of images in a data set
that are correctly localized based on the PASCAL criterion, in which a given
localization is considered correct if and only if the intersection over union (IOU)
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area of the predicted and ground truth bounding boxes is greater than one half:

area(Bp N Bgt)

v = area(Sp U Bgt)

> 0.5 (5)

...where 8, is the predicted bounding box and g4 is the ground truth bounding
box [22].

Pre-Trained Image Classification Deep CNN. To demonstrate that our
approach works with an image classification deep CNN that was in no way spe-
cialized for our localization method, we opted to use a publicly available VGG16
network. This network provides ImageNet object classes as output, allowing us
to calculate sensitivity maps based on the network classification when examining
ImageNet data. For the PASCAL VOC 2007 data set, we used the previously de-
scribed method of calculating derivatives based on the attention map of VGG16,
since there is not consistent class correspondnce between the PASCAL VOC 2007
classes and the classes on which VGG16 was trained. To produce sensitivity maps
for the PASCAL VOC 2007 data set, we aggregated across color channels by us-
ing the maximum absolute derivative across the three inputs for each pixel. For
the ImageNet data set, we averaged the absolute derivatives across the three
inputs in order to produce pixel sensitivity values.

For generating sensitivity maps, we have used a pretrained VGG 16 network, and
we have used the whole network architecture while we were experimenting on the
ImageNet dataset, otherwise we have removed the last 3 fully connected layers
and computed the Gestalt Total at the last convolution layer. The derivatives in
either case were computed using just one backward pass to the original pixels.
For learning bounding boxes we have used the aggregated sensitivity maps as
an input. To learn the mapping from sensitivity maps to bounding box coordi-
nates, we performed linear regression using stochastic gradient decent. Updates
were performed in batches of 2,048. The learning rate was initialized to 0.1 and
decayed by a factor of 10 every 10,000 iterations. The experiment was run on 1
GPU for 4 days.

Performance on PASCAL VOC 2007. The full PASCAL VOC 2007 data
set includes 12,608 training set images and an equal number of testing set im-
ages [7]. Each image contains an object of 1 of 20 different categories. We applied
our object localization method to this full data set. Table 1 compares the local-
ization performance of our method with that of other approaches. Note that our
method, while being very fast, outperforms the comparison algorithms.

Examples of the bounding boxes selected by our method, compared to ground
truth, for all 20 classes in the PASCAL VOC 2007 data set are shown in Figure 2.
Qualitatively, it appears as if our approach is most accurate when there is a single
target object with little crowding. However, if the target object is small and in
a crowded region of the image, performance is less reliable.

Several of the comparison methods display better localization performance
than our approach for some classes, but it is important to keep in mind that
the comparison cases had some important advantages, including taking the time
to use a sliding window and access to the class labels on which the network
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Fig. 2. Results of the proposed method on the first 10 classes of PASCAL VOC 2007.
The green boxes are the ground truth, and the red ones are the predicted bounding
boxes.

was trained. Recall that our sensitivity maps were produced, in this case, by
calculating the sensitivity of the network attention map activity to pixel values.
Thus, this comparison illustrates trade-offs between speed, performance, and
generalization. To illustrate that sensitivity maps can be used without learning
a linear mapping from the maps to bounding box coordiantes, we also examined
a heuristic method for producing bounding boxes from maps. We used a Gaus-
sian smoothing filter to smooth out the sensitivity maps, and then we picked
up the top 20% of the pixels, heuristically drawing the bounding box so as to
surround those pixels, as other researchers have done before [23,16]. We no-
ticed that this heuristic approach could damage the mean CorLoc by 3% in our
best observations. However, this process highly depends on the smoothing pa-
rameter o . The obtained results from different o values are reported in Table
2. Performance on ImageNet. ImageNet is a large image data set that has
been systematically organized by object category [4]. We executed a large scale
evaluation of our approach by using all images in ImageNet that are annotated
with ground truth localization information. This subset contains 300,916 images
involving 478 object classes. We divided this data set into a training set, a test
set, and a validation set by sampling without replacement (i.e., the intersection
between each pair of the three sets was empty). There were 225,687 images (75%)
in the training set, and there were 45,137 images in each of the other two sets.
We compared the performance of our approach with two methods discussed
in Tang et al. [22] for which ImageNet results are explicitly reported: Top Ob-
jectiveness Box & Co-Localization. Also, we noted that many images in this
data set presented the target object in the middle of the image, providing a bias
that could be leveraged by learned localization systems. Thus, as a baseline of
performance, we calculated the CorLoc performance for a system that blindly

Table 1. PASCAL VOC 2007 Test Detection Results. The proposed method performed
favorably against state of the art methods.

Method MeanCL|areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

[20] 30.2 [45.8 21.830.9 20.4 5.3 37.640.851.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4

[18] 36.2 |67.3 54.434.3 17.8 1.3 46.6 60.768.9 2.5 32.4 16.2 589 51.5 64.6 182 3.1 20.9 34.7 63.4 5.9

[9] 38.8 [56.6 58.328.4 20.7 6.8 54.969.120.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4

OM [12] 31.8 |50.4 30 34.6 18.2 6.2 39.342.257.3 10.8 29.8 20.5 41.8 43.2 51.8 24.7 20.8 29.2 26.6 45.6 12.5
PBRM (3] 36.6 [50.342.830.0 18.5 4.0 62.364.542.5 8.6 49.0 12.2 44.0 64.1 572 153 9.4 30.9 34.0 61.6 31.5
Sensitivity Maps| 40.1 |63.8 55.1 41.2 23.3 34.2 58.6 72.7 36.9 23.3 49.7 11.5 29.6 50.1 65.9 11.8 42.2 39.7 18.1 51.0 41.2
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Table 2. Average CorLoc Performance on Pascal VOC 2007 using the heuristic bound-
ing box (o is the smoothing parameter.)

7 [Cortod
10| 27.2%
201 38.4%
30| 32.5%

offered the same bounding box in the middle of the image, with average size, for
every input. The results are shown in Table 3. Once again, note the relatively
high accuracy performance of our efficient method. Also note that the baseline
was comfortingly low. As might be expected, performance varies with class. Our
algorithm appears to do well on some objects, such as balls and dogs. One might
suspect that failures arise in the linear mapping from sensitivity maps to bound-
ing box coordinates, but a perusal of the sensitivity maps, themselves, suggests
that the pixel sensitivity values vary in utility across different object categories.
Still, our method performs fairly well across the classes. Note that the IOU did
not fall below 0.62 for any class. This suggests that, while some individual im-
ages may be problematic, the overall performance for each class is quite good.
This universally strong class-specific performance is also displayed in Table 3.
The sensitivity analysis approach gives us the sensitivity of single pixels in all
channels in the RGB images. Since we are in need of locations, we need to ag-
gregate among channels. We proposed two methods, an average function, and a
maximum function. The first approach calculates the sensitivity as the average
among channels, and the second method uses the maximum absolute derivatives
among channels. We didn’t notice a significant difference between these two
methods in localization performance. The only insight is that generating sensi-
tivity maps based on the average function is a bit smoother in a visual sense
than the maximum function. The CorLoc between average and maximum ag-
gregation functions on the ImageNet dataset are 68.7 and 67.9 respectively, and
the results for these two aggregation operators on the PASCAL VOC dataset is
39.2 and 40.1, respectively.

4 Conclusion

We have presented an approach to object localization based on performing a
sensitivity analysis of a previously trained image classification deep CNN. Our
method is fast enough to be used in online applications, and it demonstrates
accuracy that is superior to some methods that are much slower. It is likely

Table 3. CorLoc Performance on ImageNet (478 Classes)

‘Method ‘Average CorLoc‘
Constant Center Box Baseline 12.34%
Top Objectiveness Box 37.42%
Co-Localization 53.20%
Sensitivity Maps 68.76%
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that even better accuracy could be had by incorporating sensitivity analysis
information into a more sophisticated bounding box estimator.

As previously noted, the idea of using sensitivity information has appeared in
previously published work. There are ways in which the results reported in this
paper are distinct, however. We have moved beyond visualization of the network
function using sensitivity (or saliency) [19] to performing direct comparisons
between different methods on the localization task. We have shown that using a
fast and simple measure of sensitivity can produce comparable performance to
that of much slower methods. Our approach produces good generalization with-
out modifying the classification network, as is done in Class Activation Mapping
(CAM) [23]. With our PASCAL VOC 2007 results, we have shown that our
approach can successfully be applied to attention maps, even when the image
contains objects belonging to a class on which the classification network was not
trained, distinguishing it from Grad-CAM [16]. In short, we have demonstrated
the power of a simple sensitivity measure for performing localization.

Note that our approach may be used with image classifiers other than CNNs.
The proposed sensitivity analysis can be conducted on any differentiable clas-
sifier, though performance will likely depend on classifer specifics. Indeed, at a
substantial time cost, even a black box classifier could be approximately ana-
lyzed by making small changes to pixels and observing the effects on activation
patterns.
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