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Abstract

Deep Convolutional Neural Networks (CNNs) have been
repeatedly shown to perform well on image classification
tasks, successfully recognizing a broad array of objects
when given sufficient training data. Methods for object lo-
calization, however, are still in need of substantial improve-
ment. In this paper, we discuss a fast and simple approach
to the localization of recognized objects in images. Our
method is predicated on the idea that a deep CNN capable
of recognizing an object must implicitly contain knowledge
about object location in its connection weights. We provide
an easy method to interpret classifier weights in the con-
text of individual classified images. This method involves
the calculation of the derivative of output class label activa-
tion with regard to each input pixel, performing a sensitivity
analysis that identifies the pixels that, in a local sense, have
the greatest influence on object recognition. Our experi-
mental results, using real-world data sets for which ground-
truth localization information is known, reveal competitive
accuracy from our extremely fast technique.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have been
shown to be effective at image classification, accurately per-
forming object recognition even with thousands of object
classes when trained on a sufficiently rich data set of la-
beled images [4]. One advantage of CNNs is their abil-
ity to learn complete functional mappings from image pix-
els to object categories, without any need for the extrac-
tion of hand-engineered image features [7]. To facilitate
learning through stochastic gradient descent, CNNs are (at
least approximately) differentiable with regard to connec-

tion weight parameters.
In this paper, we focus on object localization, identify-

ing the position in the image of a recognized object. As is
common in the localization literature, position information
is output in the form of a bounding box. Previously devel-
oped techniques for accomplishing this task generally in-
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Table 1. Comparative Performance on ImageNet (478 Classes)

Method

\ Average CorLoc ‘

Constant Center Box Baseline 12.34%
Top Objectiveness Box 37.42%
Co-Localization 53.20%
Sensitivity Maps 82.76 %

volve searching the image for the object, considering many
candidate bounding boxes with different sizes and locations,
sometimes guided by an auxilliary algorithm for heuristi-
cally identifying regions of interest [7, 3]. For each candi-
date location, the sub-image captured by the bounding box
is classified for object category, with the final output bound-
ing box either being the specific candidate region classified
as the target object with the highlest level of certainty or
some heuristic combination of neighboring or overlapping
candidate regions with high classification certainty. These
approaches tend to be time consuming, often requiring deep
CNN classification calculations of many candidate regions
at multiple scales. Efforts to speed these methods mostly
focus on reducing the number of regions considered, typi-
cally by using some adjunct heuristic region proposal algo-
rithm [5]. Still, the number of considered regions is often
reported to be roughly 2,000 per image. While these ap-
proaches can be fairly accurate, their slowness limits their
usefulness, particularly for online applications.

In this paper, we discuss an approach to object localiza-
tion that is both very fast and robust in the face of limited
ground-truth bounding box training data. This approach is
rooted in the assertion that any deep CNN for image clas-
sification must contain, implicit in its connection weights,
knowledge about the location of recognized objects. Thus,
this approach aims to leverage location knowledge that is al-
ready latent in trained image classification networks, with-
out requiring a separate learning process for localization.

2. Method

Calculating derivatives of a function of network out-
put with regard to network parameters, such as connection



weights, is a standard part of CNN training. It is common
for learning in a deep CNN to involve stochastic gradient
decent, which involves such derivatives. In image classifi-
cation networks, the objective function is designed to have
optima where training images are correctly classified. If we
now see G(x;; w*) as the output of such an image classifi-
cation network, its gradient with regard to x; would provide
information about the sensitivity of the assigned category to
individual pixels. Pixels with the largest absolute values of
this derivative will, around the input x;, produce the largest
changes in the classification decision of the CNN if those
pixels are changed. This can be seen as one measure of
how important specific pixels are for classifying the object
in the image. The calculation of this gradient can be per-
formed as efficiently as a single “backward pass” through
the classification network, producing a sensitivity map of
the image. This is well illustrated by considering the case
of a simple layered backpropagation network [6] in which
the “net input” of unit ¢, n;, is a weighted sum of the acti-
vations of units in the previous layer, and the activation of
unit 4 is g(;), where g(+) is the unit activation function. In
this case, we can define a sensitivity value for each unit, s;,
as the derivative of the network output with regard to 7;.
Using the chain rule of calculus, it is easy to show that the
sensitivity of an output unit is g’ (7; ), and, for units in earlier
layers ...

si = g'(n) Y wki s )]
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...where k iterates over all units in the immediately down-
stream layer from unit ¢ and wy; is the connection weight
from unit ¢ to unit k. This calculation may be performed,
layer by layer, from outputs to inputs, until s; values for
each input pixel are available. This demonstrates how effi-
ciently a sensitivity map can be calculated for a given clas-
sified image. In the evaluation of our approach in Section 3,
we report results using the gradient computation tools pro-
vided by TensorFlow. [1].

Object localization algorithms typically output the four co-
ordinates of a bounding box to communicate the location
of the target object. Such a bounding box is not intrinsic
to a sensitivity map, however. Heuristic techniques could
be used to identify a rectangular region that captures the
majority of the high sensitivity pixels, while avoiding low
sensitivity pixels, but we have taken a different approach.
We have opted to learn a linear mapping from sensitivity
maps to bounding box coordinates, using training images
with ground truth location information.

3. Results

We evaluated our proposed method for object localiza-
tion on the ImageNet 2012 data set [2]. The ImageNet data
set is one of the largest publicly available data sets. It also

contains many images annotated with ground truth object
location bounding boxes. We conducted a large scale eval-
uation of our approach by using all images in ImageNet
that are annotated with ground truth localization informa-
tion. This subset contains 300,916 images involving 478
object classes. We divided this data set into a training set,
a test set, and a validation set by sampling without replace-
ment (i.e., the intersection between each pair of the three
sets was empty). There were 225,687 images (75%) in the
training set, and there were 45,137 images in each of the
other two sets. We compared the performance of our ap-
proach with two methods discussed in Tang et al. [8] for
which ImageNet results are explicitly reported: Top Objec-
tiveness Box & Co-Localization. Also, we noted that many
images in this data set presented the target object in the
middle of the image, providing a bias that could be lever-
aged by learned localization systems. Thus, as a baseline
of performance, we calculated the localization performance
for a system that blindly offered the same bounding box in
the middle of the image, with average size, for every in-
put. Our results are shown in Table 1, where performance
is reported in terms of the CorLoc statistic: the percentage
of test images for which the area of intersection between
the predicted bounding box and the ground-truth box is at
least half the size of the area of the union of the two boxes.
Note the relatively strong performance of our highly effi-
cient method. Also note that the observed baseline perfor-
mance was comfortingly low.

Some example localization predictions are illustrated in
Figure 1. As might be expected, performance varies with
class. Our algorithm appears to do well on some objects,
such as balls and dogs. One might suspect that failures
arise in the linear mapping from sensitivity maps to bound-
ing box coordinates, but a perusal of the sensitivity maps,
themselves, suggests that the pixel sensitivity values vary in
utility across different object categories.

The proposed approach is quite general. Indeed, we are cur-
rently working on applying sensitivity analysis to deep net-
works trained on other tasks.

Figure 1. Example of some of some of the bounding box predic-
tions of the proposed method on ten different categories. The
green boxes are the ground truth locations, and the red ones are
the predicted bounding boxes.
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