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Abstract. Deep Convolutional Neural Networks (CNNs) have recently begun
to exhibit human level performance on some visual perception tasks. Perfor-
mance remains relatively poor, however, on some vision tasks, such as object
detection: specifying the location and object class for all objects in a still im-
age. We hypothesized that this gap in performance may be largely due to the
fact that humans exhibit selective attention, while most object detection CNNs
have no corresponding mechanism. In examining this question, we investigated
some well-known attention mechanisms in the deep learning literature, identify-
ing their weaknesses and leading us to propose a novel attention algorithm called
theDensely Connected Attention Model. We then measured human spatial atten-
tion, in the form of eye tracking data, during the performance of an analogous
object detection task. By comparing the learned representations produced by var-
ious CNN architectures with that exhibited by human viewers, we identified some
relative strengths and weaknesses of the examined computational attention mech-
anisms. Some CNNs produced attentional patterns somewhat similar to those of
humans. Others focused processing on objects in the foreground. Still other CNN
attentional mechanisms produced usefully interpretable internal representations.
The resulting comparisons provide insights into the relationship between CNN
attention algorithms and the human visual system.
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1 Introduction
Recent years have seen huge advances in the use of artificial neural networks (ANNs)
in a wide variety of machine learning applications. One particularly promising domain
is computer vision, for which deep Convolutional Neural Networks (CNNs) have been
proven successful in tasks such as classification, semantic segmentation, image cap-
tioning, and object detection. The impressive capabilities of such networks, which have
met or even surpassed human performance in some vision tasks [11], are somewhat
surprising given how little is actually understood about their internal operations. Due to
the large number of nonlinear interactions inside these networks, ANNs have long been
treated as “black boxes”, with their inner workings opaque to even their creators.
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However, just as the “black box” perspective on the human mind gave way to the
development of new methods and theoretical tools, researchers in computer science
have recently begun finding new ways of understanding the intermediate representa-
tions produced by ANNs [21]. For example, methods of “deep visualization” examine
the representations learned by individual artificial neurons by iteratively generating a
synthetic input image that maximally activates each neuron. The images produced in
this process are often surprisingly interpretable by the human eye [11], suggesting that
these networks may learn feature representations that are perhaps similar to those of the
human visual system.

Of course, ANNs have have been at the heart of powerful models of human cogni-
tive processes for over three decades [15]. In the field of computational cognitive neu-
roscience, ANNs have served a crucial role in discriminating between various proposed
models of the structure and dynamics of cognitive and brain systems [12]. By com-
paring the performance of human participants to ANNs of various designs, researchers
can investigate the feasibility of specific network models for explaining aspects of brain
and behavior. For example, while most CNNs designed for object recognition are purely
feedforward, Rajaei and colleagues recently argued, based on neuroimaging data and
computational models, that recurrent connections are crucial for performance under
cases of degraded input, such as partial object occlusion [13]. This serves to illustrate
that, by examining where humans succeed and ANNs fail, we can improve both our
understanding of the brain and create more effective computer vision systems.

In this spirit, computer scientists have been taking inspiration from the human visual
system to improve the speed and accuracy of CNNs for object detection. In particular,
visual selective attention has been proposed as one mechanism that is crucial for human
object detection performance, but such a mechanism is absent from most algorithms
designed for the same purpose. Several CNN techniques have now been proposed that
implement some form of selective attention [23, 16, 4], but it is unknown how these
attention algorithms compare to human selective attention. Examining the differences
and similarities between human overt visual attention and the attentional representa-
tions produced in these CNNs will help to hone our understanding of specifically which
features of the human visual system may most fruitfully be modeled by CNNs (and for
which tasks), or, indeed, whether deep networks ofter a promising approach to under-
standing human vision, at all. Given the relative power of human vision in comparison
to state-of-the-art object detection CNNs, comparisons of this kind might also suggest
new and better biologically-inspired approaches to selective attention in computer vi-
sion.

For the sake of comparison, we took human behavior to be approximately norma-
tive with regard to the allocation of attention. We recorded the eye motions of humans
as they detected objects in still images, and we took these data as indicating the im-
age regions most worthy of overt selective attention. We then examined a variety of
CNN approaches to attention, including a new architecture, proposed here, called the
Densely Connected Attention Model. We assessed the approaches with regard to their
correspondance to human performance. The resulting analyses have produced insights
into both human selective attention and the design of computer vision object detection
systems. By identifying the layers within the Densely Connected Attention Model that
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Fig. 1. Results of the human eye tracking study on some of our test images. The heatmaps reveal
the distribution of attention.

best capture human selective attention, we were able to identify the sort of visual fea-
tures that best predict the distribution of human eye fixations. By comparing various
CNN methods, we were able to characterize their relative strengths and weaknesses for
attention-guided object detection.

2 Eye Tracking Study

Participants. Our participants were 15 healthy undergraduate students (12 female, 3
male; age: mean±s.d.= 20.06 ±1.62) at University of California, Merced. Participants
received one hour of course credit for their participation. Participants provided informed
consent in accordance with IRB protocols. Participation was restricted to individuals
with normal vision, as reported on a pre-screen survey.
Materials. The stimuli were a subset of 200 images drawn from the PASCAL Visual
Object Classes 2007 database [6]. Each image was scaled up to twice its original size
for display on a 1920x1080 screen. The display width of images was between 636-1000
pixels, subtending 23.83-34.76 degrees of visual angle. The display height of images
was between 350-1000 pixels, subtending 13.68-34.76 degrees of visual angle. Images
were centered on a black background.
Procedure. Participants completed an object detection task individually in the lab. Par-
ticipants were seated at a desk in front of a computer screen and wore a head-mounted
Eyelink II eye tracker. The eye tracker was set to pupil/corneal reflection recording
mode and sampled at a rate of 250 Hz. A microphone was placed near participants to
record their speech. Before beginning the task, the eye tracker was calibrated with a
nine-point grid. Participants were also shown how to perform a drift correction, which
occurred prior to each trial. Eye movement data was collected with the Eyelink soft-
ware and custom Matlab scripts, implemented with the Psychophysics toolbox Matlab
package [2].

Each trial started with a drift correction in which participants had to fixate a center
dot and press the space bar to initiate the trial. Participants were allowed to pause on
the drift correction screen for as long as they wished before initiating a trial. Then, a
randomly selected image was displayed on the screen for 5000 ms. Participants were
instructed to name out loud as many unique objects as they could detect within the time
limit. This was repeated until participants had viewed all 200 images, once each. The
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Fig. 2. Results of the CAM attention algorithm. The heatmaps reveal the attention of the CNN.

experiment took about 30 minutes to complete, with ∼10 minutes dedicated to setup
and calibration and ∼20 spent on the task itself.
Data Processing. The raw eye tracking data was first converted into a Matlab-compatible
data structure using the Edf2Mat package. Then, custom scripts were used to generate
fixation heatmaps for each image. Recorded fixations contributed to the heatmaps only
if they fell entirely within the period of display. Fixations were first pooled from all par-
ticipants. Then, for each image a zero matrix was generated with the same dimensions
as the pixel dimensions of the original (before scaling for display) image. Fixation co-
ordinates from the display images were then scaled down to map onto the coordinates
of the original sizes. Each possible fixation position then corresponded to a position
within the zero matrix for that image. For each recorded fixation at a given location,
the value of the corresponding cell in the zero matrix was increased by the duration of
the fixation in milliseconds. Then, all values were divided by the maximum value in the
matrix such that possible values ranged between zero and one. Finally, we performed a
convolution over the matrix with a Gaussian kernel (σ = 20, size = 80× 80). This pro-
cess generated a fixation heatmap showing the relative likelihood of fixations occurring
at each region of each image. Examples of the human eye tracking overt visual attention
maps are illustrated in Figure 1.

3 Attention Models
In recent years, deep CNNs have demonstrated human level performance on image clas-
sification tasks when given large amounts of supervised training data. This impressive
performance has led to a growing interest in understanding the internal representations
learned by the networks [5, 22, 21, 17]. Of particular interest, here, are the mechanisms
of “selective attention” in these networks that allow them to focus on relevant portions
of input images. In this section, we review several previously published approaches and
then propose a novel CNN architecture: the Densely Connected Attention Model.

3.1 Class Activation Maps

Zhou et al. proposed a technique called Class Activation Maps (CAM) [23]. These were
predicated on the observation that deep CNN architectures for computer vision lose
spatial information close to the network output due to the use of fully connected layers
after the convolutional layers. The authors proposed “chopping off” the fully connected
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layers and calculating the Global Average Pooling (GAP) of activation at the last convo-
lutional layer, aggregating the spatial information in each channel. For a given image,
let fk(x, y) represent the activation of filter k in the last convolutional layer at spatial
location (x, y). Then, for filter k, the result of performing GAP is F k =

∑
x,y fk(x, y).

A linear regression can be conducted between the F k values and each output score,
Sc, for each object class, c, producing regression weights, wc

k. Given these weights, the
CAM for a given image, with regard to object class, c, is:

Mc(x, y) =
∑
k

wc
kfk(x, y) (1)

The authors argued that using this approach would preserve more spatial location in-
formation for the main objects in the image. Examples of CAMs are depicted in Fig-
ure 2. This method has a number of drawbacks. Specifically, determining the regression
weights takes time, and using the attention information in the suggested manner can
noticeably decrease classification performance.
Gradient Based Class Activation Maps. With the goal of improving on the CAM
method, Selvaraju and colleagues proposed a different approach [16]. They argued that
the weights for each channel that are used in CAMs are implicit in the CNN, itself,
so there is no need to perform additional regressions [16]. They suggested taking the
derivative of the winning (i.e., greatest) object class output with regard to the activation
in the last convolutional layer of the network:

A =
∂yc
∂f

(2)

where yc is the output activation for object class, c, and f ∈ RW×H×K is the last
convolutional layer. The derivative values are aggregated channel-wise into a matrix,
A, and the weights for each channel are computed as:

ack =
1

W ×H
∑
x∈W

∑
y∈H

A(x, y) (3)

This weight, ack, is intended to capture the “importance” of channel k for a target class
c. The corresponding attention maps are calculated similarly to CAMs, though values
are rectified (ReLU) to be positive:

Lc
Grad−CAM = ReLU(

∑
k

ackfk) (4)

Notice that this results in a coarse heatmap of the same size as the convolutional feature
maps (14 × 14 in the case of the last convolutional layers of the VGG network). Since
this method made use of gradient information, it is called Grad-CAM. Example Grad-
CAM attention maps are illustrated in Figure 3.
Guided-Backpropagation. The Guided-Backpropagation technique was proposed as
a way to train CNNs so as to make activation in convolutional feature maps easier to
interpret [19]. The goal was to encourage units to only become active if they are con-
tributing to the activation of the appropriate object class output. This would make the
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Fig. 3. Results of the Grad-CAM attention algorithm. The heatmaps show attended regions.

Fig. 4. An illustration of the training process used in guided-backpropagation.

spatial location of active units indicative of where objects were. The method involved
modifying the standard backpropagation of error algorithm [15] by surpressing nega-
tive gradients. Unit error (delta) values were rectified, hindering the formation of strong
negative connection weights. The bias toward positive weights made the “meaning” of
learned features easier to interpret. A very simple example of this learning process is
illustrated in Figure 4. Figure 5 shows the resulting attention maps (where activation is
high) for some example images.

Guided-Gradient Based Class Activation Maps. In order to obtain information about
both relevant image regions and relevant pixels within regions, Selvaraju and colleagues
fused Guided-Backpropagation with Gradient Based Class Activation Maps, producing
the Guided Grad-CAM method [16]. The merging of the previous algorithms was done
in a simple manner. The attention maps resulting from the two algorithms were com-
bined using point-wise multiplication. Some example results are displayed in Figure 6.

The reviewed attention algorithms so far are using the last convolutional layer as
their main source for attention. The encapsulated information in the last convolution
layer is mostly abstract and it has lost lots of spatial information due to the pooling
under sampling layers. To overcome this issue, we suggest using the hidden information
in all layers, the early ones as well as the deepest ones, to maximize the sophisticated
information as well as the spatial information of the input image.
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Fig. 5. Results of the Guided-Backpropagation attention algorithm. The color-coded maps show
attended pixels.

Fig. 6. Results of the Guided-Grad-CAM attention algorithm. The color-coded maps show at-
tended pixels.

3.2 The Densely Connected Attention Model

All of these CNN attentional mechanisms rely on activation in the last convolutional
layer. Information in earlier layers of the networks is ignored. It is possible, however,
that useful guidance for attention might be found in the earlier convolutional layers,
where spatial resolution tends to be higher and detected visual features tend to be more
simple and smaller. Our proposed Densely Connected Attention Model assembles infor-
mation from each channel and each spatial location across all of the layers in the CNN
image classifier. Our method is fast and efficient, and it does not require any additional
training of the CNN. A schematic of our approach is shown in Figure 7.
Spatial Attention. Generally speaking, objects occupy only portions of images, leaving
background regions that can distract and misinform object detection systems. Instead
of considering all parts of an image equally, spatial attention can focus processing on
foreground regions, supporting the extraction of features most relevant for determining
object class and object extent.

Formally, the annotation that we use to represent the activation of convolutional
feature layer n is fn ∈ RW×H×C , where W and H are the spatial dimensions of the
rectangular layer and C is the number of feature channels in the layer. Spatial positions
are specified by coordinate pairs: L = {(x, y)|x = 1, 2, . . . ,W ; y = 1, 2, . . . ,H}.

For layer n in a pretrained image classification network, the layer-specific spatial
attention map is . . .

As
n =W s

n � fn (5)
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. . . where W s
n are weights that indicate the importance of each spatial location, across

all of the convolutional channels. We initially calculate these weights based on the sen-
sitivity of the Gestalt Total (GT) activation of the network to the feature [4]. The Gestalt
Total is calculated from the activation of the last convolutional layer, Alast, as follows:

GT =
1

H ×W × C
∑
i,j,k

As
last(i, j, k) (6)

The sensitivity of GT to a feature at layer n is . . .

Gn = ∂GT
∂fn

(7)

Ŵ s
n(x, y) =

∑C
c Gn(x, y, c), (8)

. . . where Ŵ s
n is not normalized (i.e., the weights are not in the [0, 1] range). To normal-

ize the weights for each location, we apply a softmax operation to the weights spatially
. . .

W s
n(x, y) =

exp(Ŵ s
n(x, y))∑

i∈W,j∈H) exp(Ŵ
s
n(i, j))

, (9)

. . . where W s
n(x, y) denotes the weight for location (x, y) in layer n.

Channel-Wise Attention. The spatial attention calculation assigns weights to spatial
locations, which addresses the problem of distractions from background regions. There
is another way in which distractions can arise, however. Specific channels at a given
layer can be distracting. When dealing with convolutional features, most of the exist-
ing methods treat all channels without distinction. However, different channels often
have different degrees of relevance for objects of specific classes. Here, we introduce a
channel-wise attention mechanism that assigns larger weights to channels for which the
GT is sensitive, given the currently presented image. Incorporating these channel-wise
attentional weights are intended to reduce this kind of distracting interference.

For channel-wise attention, we unfold fn asf = [f1n, f
2
n, . . . , f

C
n ], where f in ∈

RW×H is the ith channel slice of fn, and C is the total number of channels. The goal is
to calculate a weight, W c

n, to scale features according to a channel-specific assessment
of relevance, allowing for the construction of a layer-specific channel-wise attention
map:

Ac
n =W c

n · fn (10)

ComputingW c
n is facilitated by the fact that we already have the sensitivities,Gn. Thus,

an initial value for the weights can be found by setting Ŵ c
n(c) =

∑
x∈W,y∈H Gn(x, y, c).

These weights can be normalized to the [0, 1] range using the softmax function:

W c
n(c) =

exp(Ŵ c
n(c))∑

i∈C exp(Ŵ c
n(i))

, (11)

These are the final channel-wise weights for layer n.
Dense Attention Maps. Given the spatial attention weights and the channel-wise at-
tention weights, an attention weighted feature for layer n is calculated as . . .

fSCA
n = Ac

n · fn +As
n � fn, (12)
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Fig. 7. The network architecture of the Densely Connected Attention Model.

. . . with fSCA
n ∈ RW×H×C . (In Figure 7, this computation is done in the Spatial and

Channel wise Attention Module – SCA-Module.) For the last convolutional layer, m,
the attention map is simply the weighted features: Am = fSCA

m . For earlier layers, the
weighted features are concatenated across layers, incrementally from the last layer to
the first, but this is done after up-scaling lower spatial resolution (later) convolutional
layers:

ASCA
i = [UP (fSCA

m ), UP (fSCA
m−1 ), . . . , f

SCA
i ]

i = {1, . . . ,m− 1}
(13)

This process generates dense combination maps that are intended to incorporate both
semantic information from the late layers and higher resolution spatial information from
the early layers. The maps are aggregated to produce a single attention map for the
whole image. Since each layer can have a different number of channels, we simplify
this aggregation by averaging each layer’s attention map across channels, transforming
each ASCA

i into a W ×H matrix. The aggregated attention maps at each layer are then
computed as:

Ai = ASCA
m +ASCA

m−1 + . . .+ASCA
i . (14)

It is important to note that the attention weights (W s
n andW c

n) are not learned as part of a
training process. We begin with a pretained image classification network (VGG16 [18]),
and the attention weights are efficiently calculated for each layer when a given image is
presented to that network. Some resulting attention maps from our model are shown in
Figure 8.

4 Comparing CNN and Human Attention Maps
We have reviewed several existing CNN attention algorithms, and we have proposed
a novel Densely Connected Attention Model which incorporates spatial attention as
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HA conv1 conv2 conv3 conv4

conv5 conv 54 conv 543 conv 5432 conv 54321

Fig. 8. Results of the Densely Connected Attention Model for each convolutional layer, as well
as for combinations of layers. The numbers following the “conv” label indicate layer number. For
instance, “conv 54” refers to the combination of layers 5 and 4. Human eye tracking results for
this example image are also shown (HA).

well as channel-wise attention in each layer. We compared the attention maps of the
various CNNs with overt visual attention maps produced from our eye tracking data,
using exactly the same images in all cases. Our summary comparison statistic was the
mean absolute error (MAE) between attention maps . . .

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)| (15)

. . . where W and H are the width and height of the image, S(.) is the attention map
from a network, and G(.) is the “ground truth” (human performance) attention map.
We compared different CNN attention methods, but we also examined the fit of various
attention maps at individual internal layers of the Densely Connected Attention Model.
The resulting error values are summarized in Figure 9.

These results reveal that the CAM algorithm provides the closest match to overt
visual human attention on our test images, while the second layer in our proposed at-
tention mechanism comes in second place. The fact that layer 2 of our network is much
closer to the attentional patterns of human participants than later layers is quite surpris-
ing, given the total reliance on the final convolutional layer seen in other mechanisms.
However, the combination of layers in our attention mechanism makes the attentional
pattern somewhat dissimilar to that of humans.

5 Discussion

We investigated various deep CNN visual attention mechanisms and compared their
attentional patterns to that of human participants. We also proposed a novel attention
algorithm which integrates more kinds of information, at multiple scales, than the other
approaches. We found that the CAM algorithm provides the best match to human perfor-
mance, with the second convolutional layer of our Densely Connected Attention Model
ranking second. In general, none of the CNN algorithms provided a paricularly good
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Fig. 9. Error between human attention maps and those produced at various layers of the Densely
Connected Attention Model. Also shown are errors for other algorithms.

match to overt visual human attention, however. Thus, while deep CNNs may learn a
hierarchy of visual features similar to the response properties of neurons in the human
visual system [20], current attentional mechanisms in CNNs do not seem to align with
human overt attention.

This suggests that human attention may not be a good guide for improving the
object detection performance of deep CNNs. We have found that the attention maps
produced by CAM, Grad-CAM, Guided-Backpropagation, and Guided Grad-CAM tend
to focus on a single salient object in the image. In contrast, the Densely Connected
Attention Model appears to attend to all objects in the image, ignoring background
distractions. Despite these benefits, the CNN attention maps in our model were quite
different than those of humans, with the greatest similarity appearing in layers that
encode fairly low-level features. Interestingly, the results suggest that the distribution
of human spatial attention is largely driven by low level visual features, as evidenced
by the better performance of layer 2. We are left with interesting questions concerning
the nature of the differences between CNN object detection and human vision that give
rise to this mismatch of attentional patterns.
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