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Abstract—We propose a new deep convolutional neural net-
work framework that uses object location knowledge implicit
in network connection weights to guide selective attention in
object detection tasks. Our approach is called What-Where Nets
(WW-Nets), and it is inspired by the structure of human visual
pathways. In the brain, vision incorporates two separate streams,
one in the temporal lobe and the other in the parietal lobe,
called the ventral stream and the dorsal stream, respectively.
The ventral pathway from primary visual cortex is dominated
by “what” information, while the dorsal pathway is dominated
by “where” information. Inspired by this structure, we have pro-
posed an object detection framework involving the integration of
a “What Network” and a “Where Network”. The aim of the What
Network is to provide selective attention to the relevant parts of
the input image. The Where Network uses this information to
locate and classify objects of interest. In this paper, we compare
this approach to state-of-the-art algorithms on the PASCAL VOC
2007 and 2012 and COCO object detection challenge datasets.
Also, we compare out approach to human “ground-truth” at-
tention. We report the results of an eye-tracking experiment on
human subjects using images from PASCAL VOC 2007, and
we demonstrate interesting relationships between human overt
attention and information processing in our WW-Nets. Finally, we
provide evidence that our proposed method performs favorably
in comparison to other object detection approaches, often by a
large margin.

Index Terms—Object Detection, Selective Attention, Deep Neu-
ral Networks

I. INTRODUCTION

In recent years, deep Convolutional Neural Networks
(CNNs) have been shown to be effective at image classifi-
cation, accurately performing object recognition even in cases
involving a large array of object classes, given a sufficiently
rich dataset of images [1]–[4].

Image classification is only one of the core problems of
computer vision, however. Beyond object recognition [2]–
[4], there are applications for such capabilities as semantic
segmentation [5]–[7], image captioning [8]–[10], and object
detection [11]–[14]. The last of these involves locating and
classifying all of the relevant objects in an image. This is a
challenging problem that has received a good deal of atten-
tion [11]–[13], [15]. Since there is rarely a priori information
about where objects are located in an image, most approaches
to object detection conduct exhaustive searches over image
regions, seeking objects of interest with different sizes and
aspect ratios. For example, region proposal frameworks, like
Faster-RCNN [12], need to pass a large number of candidate

image regions through a deep network in order to determine
which parts of the image contain the most information con-
cerning objects of interest. An alternative approach involves
one shot detectors, like Single Shot Detectors (SSD) [16]
and You Only Look Once (YOLO) [13]. These methods
use networks to examine all parts of the image via a tiling
mechanism. For example, YOLO conducts a search over po-
tential combinations of tiles. The hope of single shot detection
approaches is to find the responsible tile for the object and
then identify the appropriate object location bounding box
around that tile. In a sense, most off-the-shelf object detection
algorithms distribute attention to all parts of the image equally.
Allocating equal attention across the scene is not common
in humans, however. Our brain has evolved pay selective
attention to the vital parts of the visual scene [17].

Recently, an object detection framework inspired by the
human visual system has been proposed, called Ventral-Dorsal
Nets or, simply, VDNets [18]. In VDNets, a sensitivity anal-
ysis in a pretrained image classification network (the Ventral
Net) is used to guide localization, and this approach shows
promise. However, mistakes made by the Ventral Net can be
catastrophic, masking out image regions that contain objects of
interest, making their detection impossible. Moreover, despite
the fact that this approach is accurate and faster than typical
region proposal based object detection algorithms, it still
cannot process images in real time.

In this paper, we propose a new method for extracting dense
information about object location from pretrained networks,
with the goal of improving selective attention. Specifically,
these new What-Where Nets (WW-Nets) make use of channel-
wise attention levels, as well as spatially specific attentional
information from all receptive fields. By stacking these differ-
ent kinds of attention maps, we can potentially preserve the
semantic (object class) information that comes from late layers
in the network while incorporating spatial location information
that is richly represented in early layers. By using these
stacked attention maps [4], our selective attention method is
substantially different than a simple sensitivity analysis. We
have found that our selective attention mechanism can also
substantially improve object detection performance. Moreover,
we trained a single shot detector on top of our salience map
mechanism, which made the WW-Nets suitable for real time
applications.

The human visual attention system supports our naturally



Fig. 1. WW-Nets architecture. The What Net guides the selective attention via combining the Spatial and Channel wise Attention in all convolutional layers
(SCA). It also leverages from the hidden semantic information in the late layers as well as the hidden location information in the earlier layers by dense
connections. Then the filtered image feeds into the Where Net for drawing the bounding boxes out of all objects of interest.

strong visual perception capabilities, so we see it as a useful
guide for assessing selective attention behavior. Thus, in
addition to measuring the object detection performance of
our proposed system, we investigated possible relationships
between information in WW-Nets and the patterns of attention
exhibited by humans observing the same images. We used the
distribution of fixation points produced by human subjects,
measured using eye-tracking technology, as a measure of
how the visual system distributes attention over images. The
human visual attention data will be available publicly for
future research efforts. The contribution of this work can be
summarized as follows:

• Our WW-Nets include a sophisticated, learning free,
mechanism to obtain information from different levels
of the CNN. It assigns a weight to every single spatial
location and channel in every convolutional layer. Also, it
leverages the information from the most abstract features
as well as the hidden location information in the earlier
layers by stacking them together.

• We report human attention data collected via an eye-
tracking study to provide “ground-truth” information for
vision researchers interested in where people look.

• We show that, when identifying objects in benchmark
image datasets, this framework provides superior object
detection performance over comparison methods, often
by a large margin.

• We provide comparisons of the attention of WW-Nets to
human attention.

II. RELATED WORK

Attention-Based Object Detection. Attention-based object
detection methods depend on a set of training images with as-
sociated class labels but without any object location bounding
box annotations. The lack of a need for ground-truth bounding

boxes is a substantial benefit of this approach, since manually
obtaining such information is costly.

One object detection approach of this kind is the Class Acti-
vation Map (CAM) method [19]. This approach is grounded in
the observation that the fully connected layers that appear near
the output of typical CNNs largely discard spatial information.
To compensate for this, the last convolutional layer is scaled up
to the size of the original image, and Global Average Pooling
(GAP) is applied to the result. A linear transformation from
the Global Average Pooling (GAP) values to class labels is
learned. The learned weights to a given class output are taken
as indicating the relative importance of different filters for
identifying objects of that class.

For a given image, the individual filter activation patterns in
the upscaled convolutional layer are entered into a weighted
sum, using the linear transformation weights for a class of
interest. The result of this sum is a Class Activation Map that
reveals image regions associated with the target class.

The object detection success of the CAM method has been
demonstrated, but it has also inspired alternative approaches.
The work of Selvaraju et al. [20] suggested that Class Ac-
tivation Maps could be extracted from standard image clas-
sification networks without any modifications to the network
architecture and additional training to learn filter weights. The
proposed Grad-CAM method computes the gradients of output
labels with respect to the last convolutional layer, and these
gradients are aggregated to produce the filter weights needed
for CAM generation. This is an excellent example of saliency
based approaches that interpret trained deep CNNs, with others
also reported in the literature [21]–[23].

As previously noted, attention-based object detection
methods benefit from their lack of dependence on bounding
box annotations on training images. They also tend to be
faster than supervised object detection approaches, producing
results by interpreting the internal weights and activation



maps of an image classification CNN. However, these
methods have been found to be less accurate than supervised
object detection techniques.

Supervised Object Detection. Supervised object detection
approaches require training data that include both class
labels and tight bounding box annotations for each object
of interest. Explicitly training on ground-truth bounding
boxes tends to make these approaches more accurate than
weakly supervised methods. These approaches tend to be
computationally expensive, however, due to a need to search
through the space of image regions, processing each region
with a deep CNN. Tractability is sought by reducing the
number of image regions considered, selecting from the space
of all possible regions in an informed manner. Methods vary
in how the search over regions is constrained.

Some algorithms use a region proposal based framework.
A deep CNN is trained to produce both a classification output
and location bounding box coordinates, given an input image.
Object detection is performed by considering a variety of
rectangular regions in the image, training the CNN class output
when an object of interest is in the input region presented
to the network. Importantly, rather than consider all possible
regions, the technique depends on a region proposal algorithm
to identify the image regions to be processed by the CNN. The
region proposal method could be either an external algorithm
like Selective Search [24], or it could be an internal component
of the network, as done in Faster-RCNN [12]. The most
efficient object detection methods of this kind are R-CNN [15],
Fast-RCNN [11], Faster-RCNN [12], and Mask-RCNN [7].
Approaches in this framework tend to be quite accurate, but
they face a number of challenges beyond issues of speed. For
example, in an effort to propose regions containing objects
of known classes, it is common to base region proposals
on information appearing late in the network, such as the
last convolutional layer. The lack of high resolution spatial
information late in the network makes it difficult to detect
small objects using this approach. There are a number of
research projects that aim to address this issue by combining
low level features and high level ones in various ways [21],
[25].

Rather than incorporating a region proposal mechanism,
some supervised methods perform object detection in one
feed-forward pass. A prominent method of this kind is YOLO,
as well as its extensions [13], [14]. In this approach, the
image is divided into tiles, and each tile is annotated with
anchor boxes of various sizes, proposing relevant regions.
The resulting information, along with the image tiles, are
processed by a deep network in a single pass in order to find
all objects of interest. While this technique is less accurate
than region proposal approaches like Faster-RCNN, it is much
faster, increasing its utility for online applications.

It is worth noting that supervised object detection methods
can be seen as spreading attention across the full image,
examining all possible regions, to some degree. This is com-
putationally costly.

A comparison of these two general approaches to object
detection displays a clear trade-off between accuracy and
computational cost (speed). This gives rise to the question of
whether this trade-off can be avoided, in some way.

Dual Neural Networks as Two Pathways for Object
Detection. As previously noted, our brain evolved to pay
attention to the gist of the scene and ignore the unimportant
parts [17]. This is one of the reasons why human beings
are good at finding objects in images. Neither of the two
general frameworks for object detection take advantage of such
a mechanism. Recently, a novel object detection framework
called Ventral-Dorsal Networks (VDNets) has been proposed
as an object detection approach inspired by the human visual
system. VDNets are actually composed of two interacting deep
networks, reflecting the two major information processing
streams emerging from primary visual cortex [18]. We have
found that VDNets exhibit strong object detection perfor-
mance, but they can fail catastrophically if the Ventral Network
mistakenly masks out objects of interest. Moreover, despite an
increase in detection speed, this method cannot be used in real
time applications due to a bottleneck in the Dorsal Network.

With the goal of improving Ventral Network performance,
this paper proposes a substantially different selective attention
algorithm. Rather than relying on an assessment of the con-
tribution of pixels to the output of the last convolutional layer
of a pretrained image classification network, we propose per-
forming sensitivity analyses at all of the layers in the network
and densely aggregating the resulting information to guide
selective attention. This approach is intended to make use
of both semantic information and spatial information by con-
sidering channel-wise attention and spatial attention at every
convolutional layer in a pretrained classification CNN called
the What Network. The channel-wise and spatial sensitivity
values for each layer are stacked to preserve object location
information implicit in the full network. The result is used to
guide selective attention, masking the input image before it is
presented to the Where Network for object detection. We also
examined architectures for the Where Network appropriate for
real time tasks. Finally, we compared this attention mechanism
to human data.

III. ALGORITHM

Dense Attention of What Networks. Our investigations
into WW-Nets used a pretrained image classification network
to guide selective attention. In our initial studies, for a given
input image, the sensitivity of activity late in the network to
each pixel was efficiently calculated, and regions containing
low sensitivity pixels were masked out. Our What Network
has two major parts. First, we calculated the saliency of
image regions based on activity at layers throughout the
network, rather than only at the last convolutional layer. We
aggregated spatial and channel-wise sensitivity information at
each layer to produce layer-specific attention maps. Second,
we densely stacked the whole collection of attention maps,
from all layers to capture the most abstract features of the
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Fig. 2. Example Human Eye Fixation Distributions on PASCAL VOC Images

objects in the deep layers as well as obtaining the spatial
locations of the objects in the shallow layers, in order to
drive selective attention to image regions. The architecture of
WW-Nets is depicted in Figure 1.

A. Spatial & Channel-wise Attention (SCA) Module
Spatial Attention. Generally speaking, objects occupy only

parts of images, leaving background regions that can distract
and misinform object detection systems. Instead of considering
all parts of an image equally, spatial attention can focus
processing on foreground regions, supporting the extraction
of features most relevant for object class and object extent.

We represent a convolutional feature of layer n by fn ∈
RW×H×C , where W and H are the spatial dimensions of the
rectangular layer and C is the number of feature channels in
the layer. Spatial positions are specified by coordinate pairs:
L = {(x, y)|x = 1, 2, . . . ,W ; y = 1, 2, . . . ,H}.

For a layer in a pretrained image classification network,
the layer-specific spatial attention map is generated by the
following equation:

As
n =W s

n � fn (1)

where Wn are weights that indicate the importance of each
spatial location, across all of the convolutional filters, for
the current image. We initially calculate these weights based
on the sensitivity of the Gestalt Total (GT) activation of the
network to the feature. The Gestalt Total is calculated from
the activation of the last convolutional layer, Alast, as follows:

GT =
1

H ×W × C
∑
i,j,k

Alast(i, j, k) (2)

GT is the activation over the most abstract features in the last
convolutional layer. The sensitivity of GT to a feature at layer
n is the following:

Gn =
∂GT

∂fn
; Wu

n (x, y) =

C∑
c

Gn(x, y, c) (3)

where Wu
n is not normalized (i.e., the weights are not in the

[0, 1] range). To normalize the weights for each location, `,
we apply a softmax operation to the weights spatially:

W s
n(l) =

exp(Wu
n (l))∑

i∈L exp(W
u
n (i))

(4)

where W s
n(l) denotes the weight for location l in layer n.

Channel-Wise Attention. The spatial attention calculation
assigns weights to spatial locations, which addresses the
problem of distractions from background regions. There is
another way in which distractions can arise, however. Specific
channels at a given layer can be distracting. When dealing
with convolutional features, most existing methods treat all
channels without distinction. However, different channels are
often different in their relevance for objects of specific classes.
Here, we introduce a channel-wise attention mechanism that
assigns larger weights to channels to which the GT is sensi-
tive, given the currently presented image. Incorporating these
channel-wise attentional weights are intended to reduce this
kind of distracting interference.

For channel-wise attention, we unfold fn as f =
[f1n, f

2
n, . . . , f

C
n ], where f in ∈ RW×H is the ith slice of fn, and

C is the total number of channels. The goal is to calculate a
weight, W c

n, to scale the convolutional features according to
a channel-specific assessment of relevance:

Ac
n =W c

n · fn (5)

Computing W c
n is facilitated by the fact that we already have

the sensitivities, Gn. Thus, an initial value for the weights
can be had by setting Ŵ c

n(c) =
∑

x∈W,y∈H Gn(x, y, c). These
weights can be normalized to the [0, 1] range using the softmax
function:

W c
n(c) =

exp(Ŵ c
n(c))∑

i∈C exp(Ŵu
n (i))

(6)

These are the final channel-wise weights for layer n.

Dense Attention Maps. Given the spatial attention weights
and the channel-wise attention weights, an attention weighted
feature for layer n is calculated as:

fSCA
n = Ac

n · fn +As
n � fn (7)

where fSCA
n ∈ RW×H×C . These weighted features are

concatenated across layers, incrementally from the last layer
to the first, but this is done after up-scaling lower spatial
resolution layers. For the last layer, m, the map is simply
the weighted features: Am = fSCA

m . For earlier layers:

Ai = [UP (fSCA
m ), UP (fSCA

m−1 ), . . . , f
SCA
i ]

i = {1, . . . ,m− 1}
(8)



The result is dense combination maps that are intended to
incorporate both semantic information from the late layers
and spatial information from the early layers. These attention
maps are then combined to make a single map for the whole
image. Since each layer can have a different number of
channels, we simplify this aggregation by averaging each
layer’s attention map across channels, tranforming each Ai

into a W ×H matrix. The aggregated attention maps at each
layer are computed as:

Atti = ASCA
m ⊕ASCA

m−1 ⊕ . . .⊕ASCA
i (9)

The process of spatial & channel wise attention, along with
dense connections among them, is depicted in Figure 1.

The final aggregated attention map, at the first layer, is Att1.
We smooth this W ×H map by convolving it with a Gaussian
filter, and then we threshold the result. This produces a binary
mask specifying regions of relevance. The original image is
multiplied by this mask to produce the input to the Where
Network.

It is important to note that the attention weights (W s
n and

W c
n) are not learned as part of a training process. We begin

with a pretained image classification network for the Ventral
Network, and the attention weights are efficiently calculated
for each layer when a given image is presented to that network.

Where Network. Blanking irrelevant regions in the image
substantially reduces the space of candidate regions to consider
during object detection. In the Where Network, the masked
image is provided as input to a deep CNN trained to propose
regions of interest with anchor boxes, process the contents of
those regions, and output both class labels and bounding box
coordinates. This is similar to the approach used by Faster-
RCNN [12]. The Where Net is trained using a dataset of im-
ages that are annotated with both ground-truth class labels and
ground-truth bounding boxes. Network parameters are selected
so as to minimize a combination of the classification loss and
the regression loss arising from the output of bounding box
coordinates:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i )

+λ
1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

(10)

where i is the index of an anchor box appearing in the
current training mini-batch and pi is the predicted probability
of anchor i containing an object of interest. The ground-truth
label p∗i is 1 if anchor i is positive for object presence and
it is 0 otherwise. The predicted bounding box is captured by
the 4 element vector ti, and t∗i contains the coordinates of the
ground-truth bounding box associated with a positive anchor.
The two components of the loss function are normalized
by Ncls and Nreg, and they are weighted by a balancing
parameter, λ. In our current implementation, the classification
loss term is normalized by the mini-batch size (i.e., Ncls = 32)
and the bounding box regression loss term is normalized by
the number of anchor locations (i.e., Nreg ≈ 2, 400). We set

λ = 10, making the two loss terms roughly equally weighted
(due to differences in scale).

It is worth noting that our general approach could easily in-
corporate other object detection algorithms for the Where Net.
The only requirement is that the object detection algorithm
must be able to accept masked input images. For the results
presented in this paper, we have used a region proposal based
approach, due to the high accuracy values reported for these
methods in the literature. Having the What Net reduce the
number of proposed regions was expected to speed the object
detection process and also potentially improve accuracy by
removing from consideration irrelevant portions of the image.
As discussed in the next section, we also trained YOLO as an
alternative Where Net for achieving real time performance.

IV. EXPERIMENTAL RESULTS

Experiment Design and Implementation. We evaluated
the WW-Nets object detection model on PASCAL VOC
2007 [26], PASCAL VOC 2012 [27], and COCO datasets [28].
We also compared the attention model to human performance.
Source code and human selective attention heatmaps will be
made publicly available.

The PASCAL VOC 2007 dataset has 20 classes and 9, 963
images which have been equally split into a training/validation
set and a test set. The PASCAL VOC 2012 dataset contains
54, 900 images from 20 different categories, and it has been
split approximately equally into a training/validation set and
a test set. For PASCAL VOC 2007, we conducted training on
the union of the VOC 2007 trainval set and the VOC 2012
trainval set, and we evaluated the results using the VOC 2007
test set. (This regimen is standard practice for these datasets.)
For PASCAL VOC 2012, we performed training on its trainval
set, and we evaluated the result on its test set. To evaluate
performance, we used the standard mean average precision
(mAP) measure. We report mAP scores using IoU thresholds
at 0.5 for PASCAL datasets and we used mAP with both IOU
thresholds at 0.5 and 0.75 for the COCO dataset.

For networks with 224× 224 image inputs, using PASCAL
VOC, we trained the model with a mini-batch size of 1 due
to GPU memory constraints. We started the learning rate at
3 × 10−4 for the first 900, 000 iterations. We then decreased
it to 3× 10−5 until iteration 1, 200, 000. Then, we decreased
it to 3× 10−6 until iteration 2, 000, 000. In all cases, we used
a momentum optimizer value of 0.9.

PASCAL VOC 2007 Results. The results of the PASCAL
VOC 2007 dataset evaluation appear in Table I. For the
What Net, we utilized VGG16 pretrained on the ImageNet
dataset [37]. We removed the fully connected layers and
softmax calculation from VGG16, and we calculated GT based
on the last convolutional layer. No fine tuning of parameters
was done. For the Where Net we used Resnet 101 [30].

We also tried YOLO V2. All of the networks were trained
using 4 GPUs.

We compared our performance results with those reported
for a variety of state-of-the-art approaches to object detection.
Our primary baseline was Faster-RCNN using a Resnet 101



TABLE I
PASCAL VOC 2007 TEST DETECTION RESULTS. NOTE THAT THE MINIMUM DIMENSION OF THE INPUT IMAGE FOR FASTER AND R-FCN IS 600, AND
THE SPEED IS LESS THAN 10 FRAMES PER SECOND. SSD300 INDICATES THE INPUT IMAGE DIMENSION OF SSD IS 300× 300. LARGE INPUT SIZES CAN

LEAD TO BETTER RESULTS, BUT THIS INCREASES RUNNING TIMES. ALL MODELS ON THE UNION OF THE TRAINVAL SET FROM VOC 2007 AND VOC
2012 AND TESTED ON THE VOC 2007 TEST SET, EXCEPT FOR THE MODEL LABELED WW-NETS∗ WHICH HAS BEEN TRAINED ON THE TRAINVAL SET

FROM VOC 2007 AND TESTED ON 2007 TEST SET. ALSO, WW-NETS+ IS TRAINED ON THE UNION OF TRAINVAL SET FROM VOC 2007 AND VOC 2012
AND IMAGENET AND TESTED ON THE VOC 2007 TEST SET.

Method Network mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster [12] VGG 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6
ION [29] VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

Faster [30] Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72
MR-CNN [31] VGG 78.2 80.3 84.1 78.5 70.8 68.5 88 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85 76.4 48.5 76.3 75.5 85 81

R-FCN [32] Residual-101 80.5 79.9 87.2 81.5 72 69.8 86.8 88.5 89.8 67 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
SSD300 [16] VGG 77.5 79.5 83.9 76 69.6 50.5 87 85.7 88.1 60.3 81.5 77 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
SSD512 [16] VGG 79.5 84.8 85.1 81.5 73 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79 86.6 80

DSSD321 [33] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78 80.9 87.2 79.4
DSSD513 [33] Residual-101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7
STDN300 [21] DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
STDN321 [21] DenseNet-169 79.3 81.2 88.3 78.1 72.2 54.3 87.6 86.5 88.8 63.5 83.2 79.4 86.1 89.3 88.0 77.3 52.5 80.3 80.8 86.3 82.1
STDN513 [21] DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5

VDNet [18] Resnet-101 86.2 95.8 98.1 98.4 65.1 94.6 90.1 96.2 71.7 72.3 54.6 97.9 95.6 89.2 90.1 93.2 69.1 89.2 82.1 93.4.6 74.0
WW-Nets∗ YOLONet 61.4 66.5 69.5 61.9 39.2 42.8 69.2 65.3 79.3 44.2 57.3 54.8 72.9 77.1 69.1 72.4 34.2 49.5 63.1 76.1 65.2
WW-Nets YOLONet 63.7 80.1 73.2 54.1 47.2 43.1 74.5 73.2 78.6 42.1 62.8 57.3 74.9 77.7 73.6 73.2 30.2 53.1 64.1 75.9 65.9
WW-Nets Resnet-101 86.7 95.8 98.4 98.2 66.4 94.6 90.2 96.1 71.2 72.8 54.9 97.9 95.6 89.6 90.3 93.2 69.6 89.2 82.1 93.2 74.1

WW-Nets+ Resnet-101 88.1 94.1 97.7 98.9 67.7 94.5 92.1 95.9 72.1 73.2 52.2 98.0 96.3 87.9 91.4 91.8 70.6 91.1 81.9 95.1 72.6

TABLE II
PASCAL VOC 2012 TEST DETECTION RESULTS. WW-NETS+ IS TRAINED ON THE UNION OF TRAINVAL VOC 2012 AND IMAGENET.NOTE THAT THE

PERFORMANCE OF WW-NETS IS ABOUT 6% BETTER THAN BASELINE FASTER-RCNN.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
HyperNet-VGG [34] 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.97 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

HyperNet-SP [34] 71.3 84.1 78.3 73.3 55.5 53.6 78.6 79.6 87.5 49.5 74.9 52.1 85.6 81.6 83.2 81.6 48.4 73.2 59.3 79.7 65.6
Fast R-CNN + YOLO [13] 70.7 83.4 78.5 73.5 55.8 43.4 79.1 73.1 89.4 49.4 75.5 57.0 87.5 80.9 81.0 74.7 41.8 71.5 68.5 82.1 67.2

MR-CNN-S-CNN [35] 70.7 85.0 79.6 71.5 55.3 57.7 76.0 73.9 84.6 50.5 74.3 61.7 85.5 79.9 81.7 76.4 41.0 69.0 61.2 77.7 72.1
Faster R-CNN [12] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

NoC [36] 68.8 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1
VDNets [18] 73.2 85.1 82.4 73.6 57.7 61.2 79.2 77.1 85.5 54.9 79.8 61.4 87.1 83.6 81.7 77.9 45.6 74.1 64.9 80.3 73.1

WW-Nets 74.1 85.7 82.2 74.1 55.9 60.9 79.8 76.4 83.5 56.9 78.4 63.4 88.4 83.9 81.3 77.1 46.5 74.6 65.3 80.1 72.9
WW-Nets+ 76.8 87.2 81.9 75.7 56.3 61.9 76.2 76.1 85.1 55.7 79.8 62.5 87.2 82.8 82.4 79.5 43.2 73.1 64.1 81.7 73.2

network trained on PASCAL VOC 2007. As shown in Table I,
the selective attention process of our approach (What-Whare
Nets) resulted in substantially better performance in compari-
son to Faster-RCNN and other methods. WW-Nets appear to
be more accurate at detecting larger objects than smaller ones,
perhaps because the region proposal network based its output
on the last (lowest resolution) convolutional layer. For most of
the object classes, WW-Nets performed favorably against other
methods by a large margin. One shot detectors did not perform
as well as the region proposal based approaches (as expected).
We observed this by training YOLO V2 on PASCAL VOC
2007 and the union of PASCAL VOC 2007 and 2012 dataset
and using the trained YOLO V2 network for the Where Net.
The difference likely reflects a trade off between speed and
accuracy.

PASCAL VOC 2012 Results. We also measured WW-
Nets performance on the PASCAL VOC 2012 dataset. The
What Net was VGG16, with features for calculating GT
extracted from the last convolutional layer. The Where Net
was initialized with parameters previously learned for the
PASCAL VOC 2007 evaluation, but further training was done
on PASCAL VOC trainval sets. For the additional training, the
learning rate was initialized to 3×10−4 for 900, 000 iterations,
and then it was reduced to 3 × 10−5 until reaching iteration
1, 200, 000. The learning rate was further reduced to 3×10−6

until reaching 3, 000, 000 iteration. The training was done on 4

GPUs. This resulted in WW-Nets that produced comparable or
better performance than state-of-the-art methods. Performance
results for PASCAL VOC 2012 are shown in Table II.

COCO Results. We also measured WW-Nets performance
on the COCO dataset. The What Net was VGG16, with
features for calculating GT extracted from the last convo-
lutional layer. The Where Net was Resnet 101. Initialized
with parameters previously learned for the PASCAL VOC
2012 evaluation, the network was further trained using the
COCO training-dev set. The training was done on 4 GPUs.
This resulted in WW-Nets that produced comparable or better
performance than state-of-the-art methods, often by a large
margin. Performance results for COCO are shown in Table III.

V. HUMAN ATTENTION

Participants. 15 healthy undergraduate students (12 female,
3 male; age: mean±s.d.= 20.06 ± 1.62) were recruited from
the University of California, Merced campus. Participants
provided informed consent in accordance with IRB protocols
and received one hour of course credit for their participation.
Participation was restricted to those who reported normal,
uncorrected vision in a pre-screen survey.

Materials. The images seen were a subset of 200 images
from PASCAL VOC 2007. For display, images were scaled
up to double their original size. The display width of images
ranged from 636 − 1000 pixels (mean= 953.68; median=



TABLE III
COMPARISON ON COCO TEST-DEV REVEALS THAT WW-NET PERFORMS FAVORABLY AGAINST STATE-OF-THE-ART METHODS.

Method Backbone Input Resolution AP AP50 AP75

Faster R-CNN w/ FPN [38] ResNet-101 1000× 600 49.5 59.1 39.0
Deformable-CNN [39] Inception-ResNet 1000× 600 - 58.0 -
Deep Regionlets [40] ResNet-101 1000× 600 - 59.8 -

YOLOv2 [14] DarkNet-19 544× 544 31.6 44.0 19.2
YOLOv3 [41] DarkNet-53 608× 608 46.1 57.9 34.4

SSD [16] ResNet-101 513× 513 41.8 50.4 33.3
DSSD [33] ResNet-101 513× 513 44.2 53.3 35.2

RetinaNet [42] ResNet-101 1333× 800 50.7 59.1 42.3
WW-Net (ours) Resnet 101 511× 511 51.6 57.8 45.3
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Fig. 3. MAE Measure Between Human Fixation Distributions and Attention
Maps at Different Layers of WW-Nets

1000; standard deviation=102.54). The display height of im-
ages ranged from 350−1000 pixels (mean= 759.71; median=
750; standard deviation= 120.73). The ordering of images was
randomized within participants.

Procedure. Participants completed the task individually in a
research laboratory. Participants were seated at a desk in front
of a computer and were fitted with a head-mounted Eyelink II
eye tracker system. A microphone was placed nearby to record
participants’ speech. Prior to the beginning of the experiment,
the eye-tracker was calibrated using a standard nine-point grid,
and the subject was shown how to perform a drift correction,
which took place at the beginning of each trial. Eye movement
data was collected via the Eyelink control software and custom
MATLAB scripts. Data from the right eye were collected using
both pupil shape and corneal reflection. Each trial began with
the participant fixating the center of the screen and pressing the
space bar to initiate the trial. Then, an image was displayed
in the center of the screen for 5 seconds. Participants were
instructed to name out loud as many different objects as they
could identify in the image, within a 5-second time limit.

Fixation Heat-Map. The raw eye-tracking data were con-
verted into MatLab data structures using the Edf2Mat pack-
age. Heat maps were generated from the eye-fixation data.
Fixations were included in the analysis only if they began
at or after the start of the trial. Fixations were pooled from

all participants. For each image, a zero matrix with the same
N × M dimensions as the original image pixel height and
width was created. Fixation coordinates were scaled so that
they corresponded to locations within the original image sizes
and then rounded to the nearest integer. Thus, the coordinate
values for each fixation corresponded to a location within the
matrix. For each fixation, the value of the corresponding matrix
position was increased by the duration of the fixation in mil-
liseconds. Then, all values of the matrix were divided by the
maximum value of the matrix in order to normalize all matrix
values to the [0, 1] range. Finally, a convolution was performed
on the matrix using a Gaussian kernel (σ = 20, size = 80×80).
These steps yielded a heat map showing the likely places to
which participants attend within the images. Calculations were
performed in MATLAB using custom scripts.

Eye-Tracking Study Results. Example distribution
heatmaps of human fixations are shown in Figure 2. We used
these distributions as a form of ground-truth for analyzing
the attention maps produced by WW-Nets. We compared the
attention map distributions, G(x, y), with the human fixation
distributions, S(x, y), using a simple Mean Absolute Error
(MAE) measure.

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)| (11)

where W and H are the width and height of the image. We
performed this assessment for various attention maps in the
network. The resulting error values are shown in Figure 3.

We found that the second convolutional layer displayed
the greatest similarity to human performance. This contrasts
with the attention mechanisms in other object detection
frameworks, which frequently base attention only on the last
convolutional layer. It appears as if the high resolution and
fundamental features learned by the network provide relatively
good guides for attention during object detection. Both the
object detection system software and the fixation distribution
data collected from human subjects will be made publicly
available.

VI. CONCLUSION

In this paper, we highlighted the utility of incorporating
selective attention mechanisms into object detection algo-
rithms. We suggested that such mechanisms could guide the



search over image regions, focusing this search in an informed
manner. In addition, we demonstrated that the resulting re-
moval of distracting irrelevant material can improve object
detection accuracy substantially. Our approach was inspired
by the visual system of the human brain. Theories of spatial
attention that see it as arising from dual interacting “what”
and “where” visual streams led us to propose a dual network
architecture for object detection. The resulting architecture,
WW-Nets, integrates attention based object detection methods
with supervised approaches.

The benefits of selective attention, as implemented in WW-
Nets, are evident in the performance results reported on
the PASCAL VOC 2007, PASCAL VOC 2012, and COCO
datasets. Evaluation experiments revealed that WW-Nets dis-
play greater object detection accuracy than state-of-the-art
approaches, often by a large margin.
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