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ABSTRACT

Machine learning approaches to auditory object recognition
are traditionally based on engineered features such as those
derived from the spectrum or cepstrum. More recently, end-
to-end classification systems in image and auditory recog-
nition systems have been developed to learn features jointly
with classification and result in improved classification accu-
racy. In this paper, we propose a novel end-to-end deep neu-
ral network to map the raw waveform inputs to sound class
labels. Our network includes an “inception nucleus” that op-
timizes the size of convolutional filters on the fly that results
in reducing engineering efforts dramatically. Classification
results compared favorably against current state-of-the-art ap-
proaches, besting them by 10.4 percentage points on the Ur-
bansound8k dataset. Analyses of learned representations re-
vealed that filters in the earlier hidden layers learned wavelet-
like transforms to extract features that were informative for
classification.

Index Terms— End-to-End Learning, Auditory Object
Recognition, Inception Nucleus, Deep Convolutional Neural
Networks, Sound Event Classification

1. INTRODUCTION
Deep Convolutional Neural Networks (CNNs) have proven
effective in learning to classify large sets of categories when
given very large numbers of training examples [1, 2]. One of
the advantages of deep CNNs in object recognition is their
ability to learn useful features in an end-to-end manner by
mapping raw data, such as RGB pixels, to class labels.
In contrast, auditory object recognition is typically imple-
mented based on engineered features [3, 4]. One of the
most powerful types of engineered representation for speech
recognition tasks is based on the mel-frequency cepstrum [5],
which is basically the discrete cosine transform of the win-
dowed spectra. Researchers have used such engineered fea-
tures as inputs to CNNs for audio classification tasks, such
as Automatic Speech Recognition (ASR) [6] and music anal-
ysis [7]. In these cases, CNNs are typically applied to two-
dimensional feature maps created by arranging the log-mel
cepstral features of each frame along the time axis. This

feature map creates locality in both time and frequency do-
mains [8], which means that the machine learning problem
can be framed as an image classification problem.
However, cepstral features were designed specifically for
speech recognition and may not be optimal for other types
of audio classification tasks. More generally, pre-engineered
features will be tailored to whatever the problem is to be
solved, which means they may not be readily transferred to
other problem domains. Another potential problem with engi-
neered features is that they must be computed as inputs to the
classification system, such as a deep learning convolutional
network. On-line computation of spectral or cepstral features
can be costly in terms of time and power, especially for edge
computing applications that do not have access to cloud com-
puting servers. More recently, researchers have developed
deep learning networks that take raw waveforms as input,
rather than using pre-engineered features. This approach is
known as end-to-end audio classification. For instance, Dai
et al. proposed five CNNs with different architectures and a
varying number of parameters [9]. They achieved impres-
sive accuracy on the Urbansound8k dataset [9]. Tokozume
and Harada proposed EnvNet which is an 8-layer neural
network that takes the raw waveform as input, but requires
careful selection of hyperparameters to choose appropriately
sized kernels [10]. AclNet [11] is another end-to-end CNN
architecture, inspired by MobileNet [12] because of its com-
putational efficiency. AclNet achieved human-level accuracy
for the ESC50 dataset with only 155k parameters and 49.3
million multiply-adds per second [11]. Finally, Ravanelli and
Benjio proposed speaker recognition network based on raw
wavforms [13].

Relation to prior work. We present a deep CNN that learns
to classify broad categories of sounds directly from raw au-
dio waveforms. In comparison to previous end-to-end audio
classification efforts [9, 10, 11], we make use of a novel com-
bination of 1D and 2D convolutional layers, and, most impor-
tantly, “inception nucleus” layers. The inception nucleus ap-
proach, described in Section 2, reduces sensitivity to prespeci-
fied filter sizes by depending on adaptation during learning. In
comparison to prior work, the proposed method also greatly
reduces the number of parameters while outperforming cur-



Table 1. Our proposed deep neural networks architectures. Each column belongs to a network. The third row indicated number
of parameters. The convolutional layer parameters are denoted as “conv (1D or 2D),(number of channels),(kernel size),(stride).”
Layers with batch normalization are denoted with BN.

Inception Nucleus Nets Configurations
Inception Inception-FA Inception-FI Inception-BN

289 K 789 K 479 K 292 K
Input (32000× 1)

Conv1D,32,80,4 Inception Nucleus: Conv1D,32,80,4 with BN
Conv1D,32,60,4

Conv1D,[32,80,4]×2
Conv1D,[32,100,4]×2

Inception Nucleus: Inception Nucleus: Inception Nucleus: Inception Nucleus:
Conv1D,64,4,4 Conv1D,64,20,4 Conv1D,64,4,4 Conv1D,64,4,4 - BN

Conv1D,[64,8,4]×2 Conv1D,[64,40,4]×2 Conv1D,[64,8,4]×2 Conv1D,[64,8,4]×2-BN
Conv1D,[64,16,4]×2 Conv1D,[64,60,4]×2 Conv1D,[64,16,4]×2 Conv1D,[64,16,4]×2-BN

Max Pooling 1D, 64,10,1
Reshape (put the channels first)

Conv2D,32,3× 3,1 Conv2D,32,3× 3,-BN
Max Pooling 2D,32,2× 2,2

Conv2D,64,3× 3,1 Conv2D,64,3× 3,1-BN
Conv2D,64,3× 3,1 Conv2D,64,3× 3,1-BN

Max Pooling 2D,64,2× 2,2
Conv2D,128,3× 3,1 Conv2D,128,3× 3,1-BN

Max Pooling 2D,128,2× 2,2
Conv2D,10,1× 1,1 Conv2D,10,1× 1,1-BN

Global Average Pooling
Softmax

Fig. 1. Inception nucleus. The input comes from the previous
layer and is passed to the 1D convolutional layers with kernel
sizes of 4, 8, and 16 to capture a variety of features. The con-
volutional layer parameters are denoted as “conv1D,(number
of channels),(kernel size),(stride).” All of the receptive fields
are concatenated channel-wise in the concatenation layer.

rent state-of-the-art networks on the urbansound8k dataset by
10.4 percentage points. Thus, our CNN is a strong candidate
for low-power always-on sound classification applications. In
addition, we analyze the learned representations, using visu-
alizations to reveal wavelet-like transforms in early layers,
supporting deeper representations that are discriminative and
meaningful, even with reduced dimensionality.

2. PROPOSED METHOD
Our proposed end-to-end neural network takes time-domain
waveform data — not engineered representations — and pro-

cesses it through several 1D convolutions, the inception nu-
cleus, and 2D convolutions to map the input to the desired out-
puts. The details of the proposed architectures are described
in Table 1. The overall design can be summarized as follows:

Fully Convolution Network. We propose an inception nu-
cleus convolution layer that contains a series of 1D convolu-
tional layers followed by nonlinearities (i.e., ReLU layer) to
reduce the sensitivity of the architecture to kernel size. Con-
volutional networks are well-suited for audio signals for the
following reasons. First, similar to images, we desire our net-
work to be translation invariant to reduce the number of pa-
rameters efficiently. Second, convolutional networks allow
us to stack layers, which gives us the opportunity to detect
higher-level concepts through a series of lower-level detec-
tors. We used Global Average Pooling (GAP) in our archi-
tectures to aggregate the spatial information in the last con-
volutional layer and map this information onto class labels.
GAP greatly reduces the number of parameters to make the
network relatively light to implement.

Variable Length Input/Output. Since sound can vary in
temporal length, we want our network to handle variable-
length inputs. To do this, we use a fully convolutional net-
work. As convolutional layers are invariant to location, we
can convolve each layer based on the length of the input.
The input layer to our network is a 1D array, representing the
audio waveform, which is denoted as X ∈ R32000×1, since
the audio files are about 4 seconds, and the sampling rate was
set to be 8 kHz. The network is designed to learn a set of pa-
rameters, ω, to map the input to the prediction, Ŷ , based on



nested mapping functions, given by Eq 1.

Ŷ = F (X|ω) = fk(...f2(f1(X|ω1)|ω2)|...ωk) (1)

where k is the number of hidden layers and fi is a typical
convolution layer followed by a pooling operation.

Inception Nucleus Layer. We propose the use of an incep-
tion nucleus to produce a more robust architecture for sound
classification. This approach also makes the architecture less
sensitive to idiosyncratic variance in audio files. A schematic
representation of the inception nucleus appears in Fig 1. The
inputs to the inception nucleus are the feature maps of the
previous layer. Then, three 1D convolutions with different
kernels are applied to the inputs to capture a variety of fea-
tures. We test the following kernel sizes in our experiments:
4, 8, 16, 20, 40, 60, 80, 100. (See Section 3.) After obtaining
the feature maps from our convolutional layers, we concate-
nate the receptive fields in a channel-wise manner.

Reshape. After applying 1D convolutions on the waveforms
and obtaining low-level features, the feature map, L, will be ∈
R1×m×n. We can treat L as a grayscale image with width=m,
height=n, and channel=1. For simplicity, we transpose the
tensor L to L′ ∈ Rm×n×1. From here, we apply normal 2D
convolutions with the VGG standard kernel size of 3× 3 and
stride = 1 [1]. Also, the pooling layers have kernel sizes =
2 × 2 and stride = 2. We also implemented the inception nu-
cleus with batch normalization to analyze the effect of batch
normalization on our approach, as explained in Section 3.

Global Average Pooling (GAP). In the last convolutional
layer we compute GAP to aggregate the most abstract fea-
tures over the spatial dimensions and reduce the number of
outputs to class labels. We use GAP instead of max pooling to
reduce the number of parameters and avoid adding fully con-
nected layers at the end of the network. It has been noted in
the computer vision literature that aggregating features across
spatial locations and channels keeps important information
while reducing the number of parameters [14, 15]. We in-
tentionally did not use fully connected layers with a softmax
activation function to avoid overfitting, since fully connected
layers greatly increase the number of parameters. GAP was
implemented as follows:

GAPc =
1

w × h
∑
i,j

A(i, j, c) (2)

wherew, h, c are width, height, and channel of the last feature
map (A).

3. EXPERIMENTAL RESULTS
We tested our network on the UrbanSound8k dataset which
contains 10 kinds of environmental sounds in urban areas,
such as drilling, car horn, and children playing [16]. The
dataset consists of 8, 732 audio clips of 4 seconds or less,

Table 2. Accuracy of different approaches on the Urban-
Sound8k dataset. The first column indicates the name of the
method, the second column is the accuracy of the model on
the test set, the third column reveals the number of parame-
ters. It is clear that our proposed method has the fewest num-
ber of parameters and achieves the highest test accuracy.

Model Test # Parameters

M3-fc [9] 46.82% 129M
M5-fc [9] 62.76% 18M
M11-fc [9] 68.29% 1.8M
M18-fc [9] 64.93% 8.7M
M3-Big [9] 57.55% 0.5M
RCNN [20] 71.68% 3.7M

ACLNet [11] 65.32% 2M
EnvNet-v2 [21] 78% 101M
PiczakCNN [22] 73% 26M

VGG [23] 70% 77M
Inception Nucleus-BN (Ours) 83.2% 292K
Inception Nucleus-FA (Ours) 70.9% 789K
Inception Nucleus-FI (Ours) 75.3% 479K

Inception Nucleus (Ours) 88.4% 289K

totalling 9.7 hours. We padded zeros to the samples that
were less than 4 seconds. To speed computation, the audio
waveforms were down-sampled to 8 kHz and standardized to
zero mean and unit variance. We shuffled the training data to
enhance variability in the training set.
We trained the CNN models using the Adam [17] optimizer,
a variant of stochastic gradient descent that adaptively tunes
the step size for each dimension. We used glorot weight ini-
tialization [18] and trained each model with batch size 32 for
up to 300 epochs until convergence.
To avoid overfitting, all weight parameters were penalized by
their `2 norm, using a λ coefficient of 0.0001. Our models
were implemented in Keras [19] and trained using a GeForce
GTX 1080 Ti GPU.
Table 2 provides classification performance on the testing set
along with numbers of parameters used for the Urbansound8k
dataset. The table shows that our CNN outperformed other
methods in terms of test classification accuracy, with the
fewest number of parameters. Preliminary simulations re-
vealed that fully connected layers at the end of the network
caused overfitting due to an explosion in the number of weight
parameters. These preliminary results led us to use a fully
convolutional network with a reduced number of parameters.
We note that the deeper networks (M5, M11, and M18) can

improve performance if their architectures are well-designed.
However, our inception nucleus model is 88.4% accurate,
which outperforms the reported test accuracy of CNNs on
spectrogram input using the same dataset by a large mar-
gin [22]. Also, inception nucleus-FI achieves very good
results in terms of both accuracy and number of parameters.



Fig. 2. Illustrating 3 filters in the first convolutional layer.
The visualization indicates that learned representations in the
early layers implemented wavelet-like audio filters.

Fig. 3. Illustration of the top two components of the t-SNE of
the last convolutional layer.

This result suggests that if we let the network learn use-
ful features for the desired task in the convolutional layers,
recognition performance and generalization is improved over
pre-engineered features.

Kernel Analysis. We also analyzed the learned kernels of our
Inception Nucleus model in the very first layer of our neural
network. Interestingly, the network learns wavelet transforms
at the first convolutional layer, as has been found by other
researchers [24, 25]. Some of those filters are illustrated in
Fig 2.

Representation Analysis. To better understand the learned
representations in the Inception Nucleus model, we extracted
features from the last convolutional layer (before applying
GAP) and applied t-SNE to reduce the dimensionality to
two [26]. The results, shown in Fig. 3, suggest that the net-
work learned meaningful and discriminative features, as the
different classes are fairly well distinguished from each other.

Depth Analysis. We found that deeper networks with larger
numbers of parameters were less generalizable as indicated
by poorer performance on the test set. For example, M18 has
8.7M parameters (see Table 2) but only achieves 64.93% ac-
curacy, compared with our inception nucleus network which
achieves 88.4% by only having 289K parameters. This find-
ing runs counter to results from the image recognition liter-

ature, in which deeper networks tend to perform better than
shallower ones [2, 27, 28]. The observed detriment of addi-
tional hidden layers may be attributable to the limited number
of training examples, which can be tested in future studies
with larger datasets.

Kernel Size Analysis. Dai et al. [9] found that smaller ker-
nel sizes are insufficient to capture the necessary bandpass
filter characteristics in the earlier convolutional layers. Our
results indicate that, with the Inception Nucleus-FS, large ker-
nel sizes (e.g. 60, 80, 100) are more effective in the first con-
volutional layer. By contrast, large kernel sizes in the sec-
ond layer reduce performance substantially (e.g., using the
Inception Nuclus-FA with large kernels in the second layer
decreased performance by 13 points). We conclude that a
larger inception nucleus is more suitable for the first layer,
with smaller kernels in later convolutional layers.

Batch Normalization. We tested whether batch normaliza-
tion (BN) improves performance in our CNN, as it can for
very deep neural networks. Without BN, our inception nu-
cleus achieves 88.4% accuracy while with BN it achieves
83.2%. The slight decrease in accuracy using BN may have
been observed because our CNNs did not have enough layers
to show the advantage of BN.

4. CONCLUSION
In this study, we developed, optimized, and tested CNNs
up to 13 layers deep that used an inception nucleus to over-
come problems with choosing kernel sizes. The CNNs were
trained to perform end-to-end sound classification, and they
were benchmarked against the Urbansound8K dataset. Re-
sults from our networks, compared with competitors, showed
better performance with fewer parameters — up to 88.4% ac-
curacy using only 289K parameters. The ability to perform
end-to-end computations effectively using so few parameters
may be useful for edge computing applications, especially
with optimized hardware, such as neuromorphic implemen-
tations of deep networks [29]. Our results indicate that end-
to-end computation does not detract from performance by
forgoing cepstral or spectral features. To the contrary, our
networks outperformed competitors that used log-mel spec-
trogram inputs [22]. Visualizations of kernels learned in the
earliest layer revealed wavelet-like transforms that build up to
more abstract and discriminating learned features in deeper
layers. In summary, we have demonstrated effective end-
to-end sound classification with an efficient deep learning
network.
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